MEJORAS EN LAS NUEVAS TÉCNICAS DE INTELIGENCIA ARTIFICIAL PARA LA DETECCIÓN DE ANOMALÍAS EN REACTORES NUCLEARES (INAIA)

Gumersindo J. Verdú Martín

gverdu@iqn.upv.es

Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) Universitat Politècnica de València

Febrero 2023

- Motivación
- Objetivos
- Librerías empleadas
- Datos simulados: Caso 2D
- Diseño de la Red Neuronal
- Evaluación y Resultados
- Conclusiones
- Trabajo en Desarrollo

Motivación

- El análisis del ruido de neutrónico estudia los efectos de pequeñas perturbaciones en los reactores nucleares.
- Estas perturbaciones generalmente se expresan como cambios en las secciones eficaces macroscópicas y pueden ser causadas por fluctuaciones estocásticas de las propiedades del refrigerante y/o la vibración mecánica de los elementos combustibles.
- Análisis del ruido de neutrónico: monitoreo no invasivo, detección y ubicación de anomalías en reactores nucleares.

Objetivos

- Desarrollo de herramientas basadas en técnicas de Deep Learning para el estudio y monitorización del estado del núcleo de reactores nucleares.
- Detectar el lugar donde se ha producido una perturbación.
- Detectar qué tipo de perturbación es.
- Estudiar el nivel máximo de ruido en la señal que se puede llegar a clasificar correctamente.
- Estudiar cómo afecta la disminución de detectores activos en la clasificación.

Librerías empleadas

- Librería de Deep Learning **Keras**: sobre librerías Theano o Tensorflow.
- Modularidad, minimalismo, extensibilidad, y lenguaje **Phython**.
- Soporte CPU y GPU.
- Entrenamiento y clasificación llevado a cabo en **GPU NVIDIA A100 TESLA EDU** PCI-E 4.0 con 40GB de memoria, 6.912 CUDA cores y 640 Tensor cores.

Librerías empleadas

- Generación de datos: **FEMFFUSION.**
- Código de elementos finitos para el modelado de sistemas nucleares.
- Escrito en lenguaje de programación C++.
- Librería Open Source.
- Desarrollada en la Universitat Politècnica de València.

https://femffusion.webs.upv.es/

Datos simulados: Caso 2D

- Reactor BIBLIS 2D : 257 celdas con hasta 257 detectores activos
- Dos tipos de perturbaciones introducidas:

Cambio de la sección eficaz de dispersión $\Sigma_a(t) = \Sigma_a 0 + 0.01 \Sigma_a 0 \sin(2\pi f t)$ en la celda (i, j)

Cambio de la sección eficaz de absorción $\Sigma_s(t) = \Sigma_s 0 + 0.01\Sigma_s 0 \sin(2\pi f t)$ en la celda (i, j)

- Diferentes frecuencias: $f=0.1,\,0.5,\,1,\,5\;y\;10\;Hz$
- Diferentes ubicaciones de la perturbación: 257 posibles
- Por cada perturbación se obtienen los siguientes datos:
 - 1. Neutron Power
 - 2. Group 1 flux (ϕ_1)
 - 3. Group 2 flux (ϕ_2)
 - 4. Flux Noise Group 1 ($\delta \phi_1$)
 - 5. Flux Noise Group 2 ($\delta \phi_2$)

• TOTAL: 2570 señales

Reactor BIBLIS 2D por materiales.

Datos simulados: Caso 2D

- Adición del ruido Gaussiano:
 - ✓ Se añade ruido a las señales para no tener solo casos ideales
 - ✓ Se amplía el conjunto de señales para tener más datos
- Desviación estándar de 0.01 a 0.05 en pasos de 0.005

Type: 0.Location: 100

Adición de ruido a las señales.

• TOTAL: 25700 señales

- Prueba: Red Neuronal Convolucional VGG16
 - Red de clasificación de imágenes RGB en 1000 clases
 - 16 capas (convolucionales y densas) combinadas con capas de *Max Pooling* (submuestreo)
 - Última capa Softmax para clasificar según probabilidades
 - Precisión del 92.7% con dataset ImageNet (14 millones de imágenes)

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for largescale image recognition." arXiv preprint arXiv:1409.1556 (2014) .

• Datos de entrada:

•
$$\frac{|\delta\phi_2|}{\phi_2}$$
 para cada perturbación

- Señales unidimensionales $1x257 \rightarrow Matriz$ bidimensional 17x17
- Celdas sin detectores \rightarrow valores a 0
- Se conserva la información espacial
- Normalización de las señales entre 0 y 1

• División en tres conjuntos:

Datos de entrenamiento: 67.5% Datos de validación: 22.5% Datos de test: 10%

• Importancia de la división de los datos en conjuntos o *sets*:

• Detección **lugar** de perturbación

- Señales etiquetadas por lugar de origen de \checkmark la perturbación
- Balanceo entre los grupos (aprox. mismo \checkmark número de señales de cada origen en cada grupo)
- Fases de Dropout para reducir el overfitting \checkmark
- Última capa activación Softmax para 257 \checkmark clases

• Detección **lugar** de perturbación

	Paralli #
(None, 17, 17, 64)	640
(None, 17, 17, 64)	36928
(None, 8, 8, 64)	Θ
(None, 8, 8, 128)	73856
(None, 4, 4, 128)	Θ
(None, 4, 4, 256)	295168
(None, 4096)	θ
(None, 4096)	16781312
(None, 4096)	Θ
(None, 4096)	16781312
(None, 4096)	Θ
(None, 257)	1052929
	<pre>(None, 17, 17, 64) (None, 17, 17, 64) (None, 17, 17, 64) (None, 8, 8, 64) (None, 8, 8, 128) (None, 4, 4, 128) (None, 4, 4, 256) (None, 4096) (None, 4096) (None, 4096) (None, 4096) (None, 4096) (None, 257)</pre>

• Detección de **tipo** de perturbación

- ✓ Señales etiquetadas por tipo de la perturbación
- Balanceo entre los grupos (aprox. mismo número de señales de cada tipo en cada grupo)
- ✓ Fases de *Dropout* para reducir el *overfitting*
- ✓ Última capa activación sigmoide para 2 clases

• Detección de **tipo** de perturbación

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 17, 17, 64)	640
conv2d_1 (Conv2D)	(None, 17, 17, 64)	36928
max_pooling2d (MaxPooling2D)	(None, 8, 8, 64)	Θ
conv2d_2 (Conv2D)	(None, 8, 8, 128)	73856
max_pooling2d_1 (MaxPooling 2D)	(None, 4, 4, 128)	Θ
conv2d_3 (Conv2D)	(None, 4, 4, 256)	295168
flatten (Flatten)	(None, 4096)	θ
dense (Dense)	(None, 4096)	16781312
dropout (Dropout)	(None, 4096)	0
dense_1 (Dense)	(None, 4096)	16781312
dropout_1 (Dropout)	(None, 4096)	Θ
dense_2 (Dense)	(None, 2)	8194
Total params: 33,977,410 Trainable params: 33,977,410 Non-trainable params: 0		

• Entrenamiento detección **lugar** de perturbación

• Resultados detección **lugar** de perturbación

Distancia Euc. = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$, siendo (x₂, y₂) las coordenadas de la predicción y (x₁, y₁) las del lugar correcto.

Material	Detectores Activos	Precisión (Test set)	Distancia Media (Error)
Todos	257	1	0
1	65	0.999	0.0005
4	48	1	0
8	36	0.994	0.006
2	20	0.959	0.05
5,7	20	0.995	0.006
7	12	0.961	0.05
5,6	12	0.957	0.05
5	8	0.959	0.04
6	4	0.920	0.14

Tabla 1: Precisión localización disminuyendo el número de detectores activos (señales sin ruido).

Material	Detectores Activos	Precisión (Test set)	Distancia Media (Error)
Todos	257	1	0
1	65	0.911	0.12
4	48	0.966	0.04
8	36	0.820	0.25
2	20	0.715	0.41
5,7	20	0.842	0.20
7	12	0.732	0.43
5,6	12	0.720	0.38
5	8	0.616	0.55
6	4	0.370	1.39

Tabla 2: Precisión localización disminuyendo el número de detectores activos (señales con ruido).

Reactor BIBLIS 2D por materiales.

• Entrenamiento detección tipo de perturbación

• Resultados detección tipo de perturbación

Material	Detectores Activos	Precisión (Test set)
Todos	257	1
1	65	0.938
8	36	0.810
2	20	0.660
5, 7	20	0.853
7	12	0.552
5,6	12	0.656
5	8	0.601
6	4	0.506

Tabla 3: Precisión tipo disminuyendo el número de detectores activos (señales sin ruido).

Material	Detectores Activos	Precisión (Test set)
Todos	257	1
1	65	0.784
8	36	0.700
2	20	0.608
5, 7	20	0.590
7	12	0.547
5,6	12	0.536
5	8	0.500
6	4	0.500

Tabla 4: Precisión tipo disminuyendo el número de detectores activos (señales con ruido).

Reactor BIBLIS 2D por materiales.

Conclusiones

- Primera aproximación al uso de Redes Neuronales Convolucionales para la detección y caracterización de perturbaciones.
- Importante: generación, análisis y preparación de los datos necesarios para el entrenamiento y clasificación.
- Caso en 2D del reactor BIBLIS resuelto con CNN de 2 dimensiones.
- Baja precisión al disminuir el número de detectores activos para clasificar por tipo.
- Sin embargo, errores pequeños en la localización, sobretodo en señales sin ruido.
- Punto de partida para los casos 3D.

Trabajo en Desarrollo

- Análisis y Optimización de las redes 2D empleadas.
- Generación de los datos para un caso 3D:
 - Reactor 3D IAEA PWR.
 - Tiene 19 planos de 17x17 celdas, 4579 posibles posiciones de las perturbación.
 - Tres tipos de perturbaciones. Se añaden las axiales.
 - Total 52000 señales generadas.
- Adaptación de las CNNs para este caso 3D.
- Estudio de nuevas técnicas de Deep Learning.

Core Geometry

Two Group Cross Sections for Each Composition

Reactor 3D IAEA PWR.

Gracias por su atención

Gumersindo J. Verdú Martín gverdu@iqn.upv.es

