

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

https://ant.upc.edu

Análisis de escenarios DEC con reinundación de núcleo para combustible ATF cromado: estudio de la integridad de las barras de control (ATF-DEC)

Jordi Freixa

Marina Pérez-Ferragut Víctor Martínez-Quiroga Adrián González-Briones Iván Bravo jordi.freixa-terradas@upc.edu marina.perez@upc.edu victor.martinez.quiroga@upc.edu adrian.gonzalez.briones@estudiantat.upc.edu bravo.ivangabriel@gmail.com

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARGELONATECH

Seguridad Nuclear, la vaina

- Límites de Seguridad:
 - Alta temperatura 1477 K (1204 C)
 - 17 % de oxidación

Escenarios base de diseño: LOCA

Pero luego... Fukushima

CSN

SBO de larga duración

Acciones post-Fukushima

- Stress tests
- Potenciar el concepto DEC (Extensión de diseño)
- Elemento de combustible ATF

Level 1	Level 2		Level 3	Lev	el 4 / Level 5	
Operational states			Accident conditions			
Normal operation ¹⁾	200 2	Within design basis accidents ³⁾		Beyond design bases accidents		ctical elin
	AOOs"	a)	DBAs	DEC without core melt ⁴⁾	DEC with core melt - Severe accidents ⁵⁾	nination
	>10 ⁻² events per year	10	² - 10 ⁻⁶ events per year	10 ⁻² - 10 ⁻⁶ events per year	< 10 ⁻⁶ events per year	= 6

Elementos de combustible ATF

Cladding designs	Core components				
SiC and SiC/SiC composites	Coated and improved Zr-alloys	Advanced steels	Refractory metals	SiC/SiC channel boxes	ATCR
KAERI	UIUC	ORNL	EPRI	Toshiba	CRIEPI
Muroran	FJP (*)	GE	CGN	EPRI	AREVA
FJP (*)	KAERI	NFD			
KIT	IFE				
ORNL	KIT				
PSI					
Westinghouse					

(*) French Joint Programme (CEA-AREVA-EDF).

Combustible UO₂/Zry con película cromada

Figure 10.1. Schematic overview of KAERI's modified zirconium alloy ATF concept

Source: Kim et al., 2016.

State-of-the-Art Report

on Light Water Reactor Accident-Tolerant Fuels

UNIVERSITAT POLITÈCNICA

DE CATALUNYA

ARCELONATECH

- Fácil implementación
- Reducir la oxidación
- Mejor integridad mecánica
- Punto de fusión relativamente bajo 1500 K

Taxonomía europea

European Parliament backs nuclear and gas in EU taxonomy

06 July 2022

Share

The proposed inclusion of certain nuclear and gas activities within the European Union's list of officially approved "green" investments is set to become law after an attempt to block it fails in the European Parliament.

- ¡La energía nuclear contribuye a la sostenibilidad del sistema energético!
- Pero... Con condiciones...
- Hay que incorporar los elementos de combustible ATF

Objetivo principal del proyecto

- Capacidad para simular eventos frontera con elementos de combustible ATF de capa cromada
 - Cuantificar la oxidación
 - Evaluar el estado de las barras de control en estas condiciones

- Código de sistema para casos de daño severo
- RELAP5MOD3.2 + SCDAP + FRAP-T6 (MATPRO)

UNIVERSITAT POLITÈCNICA

DE CATALUNYA

RCFLONATECH

CSN

- Puede simular condiciones del sistema para:
 - Base de diseño
 - DEC-A
 - DEC-B

El mecanismo de oxidación

before and after oxidation. (a) as-grown; (b) 30 min; (c) 60 min; (d) 75 min; (e)

90 min; (f) 120 min; (g) 150 min; (h) 210 min; (i) 240 min.

CSN

Modelización de la capa cromada

- Revisión de modelos previos y datos experimentales
- Modelo simplificado de oxidación:
 - $k_{Cr} \approx k_{Zr} C_{Cr} \approx C_{Zr}$
 - No se consideran efectos de estrés
 - Se asume el modelo de deformación propio de Zircaloy (SCDAP)
 - El coating se añade a la capa de Zircaloy
 - La oxidación del Cr se modela calculando el grosor de la capa oxidada, los cambios energéticos y de masa así como la producción de hidrógeno
 - La oxidación del Zircaloy se ve afectada por la oxidación del Cr

Modelo de oxidación implementado

- Se imponen dos límites:
 - LC1: Límite en el cual la capa está completamente oxidada
 - LC2: Temperatura a la cual se funde el eutéctico
- Base del modelo:
 - Modelo de oxidación parabólica [6]:

$$\frac{d\delta}{dt} = \frac{A}{\delta} e^{-\frac{B}{T}} \tag{1}$$

Where: δ weight gain/layer thickness $[kg/m^2 \text{ or } m]$

- t time [s]
- T temperature [K]
- A, B parabolic rate constants

Jornadas de I+D+i, Proyectos de investigación, CSN, Madrid, 29 de febrero de 2024

Modelo de oxidación implementado

• Estimación de las constantes parabólicas a partir de datos experimentales de FRAMATOME y CEA [7]

Implementación y verificación

Condiciones	Oxidación del cromo	Oxidación del zirconio	Verif.
T _{Cr} < 1000K	$\delta_{c_{r,0}} = w_{c_{r,0}} = 0$	$\delta_{c_{r,0}} = w_{c_{r,0}} = 0$	ОК
$\begin{split} & 1000 \text{K} \leq \text{T}_{\text{Cr}} < 1586 \text{K}^{(*)}\text{,} \\ & \delta_{\text{Cr}203} < \epsilon_1 \\ & \text{t}(\text{T}_{\text{Cr}} \geq 1000 \text{K}) < 1.5 \text{h} \end{split}$	δ Ecuación 1 $w_{c_{r_2o_3}}^{c_{r_2o_3}}$ Ecuación 2	Sin oxidación, 0% $\delta_{zr_{O_2}} = 0.0 \cdot \delta_{zr_{O_2}}^{non-coated}$ $w_{zr_{O_2}}^{r_{O_2}} = 0.0 \cdot w_{zr_{O_2}}^{non-coated}$	ОК
$\begin{split} & 1000 \text{K} \leq \text{T}_{\text{Cr}} < 1586 \text{K}^{(*)}, \\ & \delta_{\text{Cr}203} < \epsilon_1 \\ & 1.5 \text{h} < \text{t}(\text{T}_{\text{Cr}} \geq 1000 \text{K}) \leq 3 \text{h} \end{split}$	$\delta_c = 10 \% \delta_c$	10% de la oxidación de Zr sin recubrimiento: $\delta_{zr_{o_2}} = 0.1 \cdot \delta_{zr_{o_1}}^{non-coated}$ $w_{zr_{o_2}}^{rfon-coated} = 0.1 \cdot w_{zr_{o_2}}^{rfon-coated}$	ОК
1000K ≤ T_{Cr} < 1586K ^(*) , δ _{Cr2O3} < ε ₁ t(from T_{Cr} ≥1000K) > 3h	$W_{C_{r_2O_3}} = 10 \% W_{C_{r_2O_3(t=1.5h)}}^{C_{r_2O_3(t=1.5h)}}$	25% de la oxidación de Zr sin recubrimiento: $\delta_{zr_{o_2}} = 0.25 \cdot \delta_{zr_{o_1}}^{non-coated}$ $w_{zr_{o_2}}^{r} = 0.25 \cdot w_{zr_{o_2}}^{rfon-coated}$	ОК
δ _{Cr2O3} ≥ε ₁	$w_{c_{r_2 o_3}} = 0 \qquad \begin{cases} \delta_{c_{r_2 o_3}} = 0 \\ \frac{dw_{c_{r_2 o_3}}}{dt} = 0 \end{cases}$	100% de la oxidación de Zr sin recubrimiento: $\delta_{zr_{O_2}} = \delta_{zr_{O_2}}^{non-coated} + \varepsilon_1$ $w_{zr_{O_2}} = W_{zr_{O_2}}^{non-coated} + w_{Cr_2O_3}(\varepsilon_1)$	ОК
T _{Cr} ≥1586K	$\delta_{w_{r_2o_3}^{c_{r_2o_3}}} = 0$ $\frac{dw_{r_2o_3}^{c_{r_2o_3}}}{dt^{c_{r_2o_3}}} = 0$	100% de la oxidación de Zr sin recubrimiento: $\delta_{zr_{o_2}} = \delta_{zr_{o_2}}^{non-coated} + \varepsilon_1$ $w_{zr_{o_2}} = W_{zr_{o_2}}^{non-Coated} + w_{Cr_2O_3}(\varepsilon_1)$	ОК
	Condiciones $T_{cr} < 1000K$ $1000K \le T_{cr} < 1586K^{(*)}, \delta_{cr203} < \varepsilon_1 \\ t(T_{cr} \ge 1000K) < 1.5h$ $1000K \le T_{cr} < 1586K^{(*)}, \delta_{cr203} < \varepsilon_1 \\ 1.5h < t(T_{cr} \ge 1000K) \le 3h$ $1000K \le T_{cr} < 1586K^{(*)}, \delta_{cr203} < \varepsilon_1 \\ t(from T_{cr} \ge 1000K) > 3h$ $\delta_{cr203} \ge \varepsilon_1$ $\delta_{cr203} \ge \varepsilon_1$ $\tau_{cr} \ge 1586K$	CondicionesOxidación del cromo $T_{cr} < 1000K$ $\delta_{c_{r_2}a_3} = w_{c_{r_2}a_3} = 0$ $1000K \le T_{cr} < 1586K^{(*)}, \\ \delta_{cr_{203}} < \varepsilon_1 \\ t(T_{cr} \ge 1000K) < 1.5h$ $\delta_{c_{r_2}a_3} = Ecuación 1$ $w_{c_{r_2}a_3} = Ecuación 2$ $1000K \le T_{cr} < 1586K^{(*)}, \\ \delta_{cr_{203}} < \varepsilon_1 \\ 1.5h < t(T_{cr} \ge 1000K) \le 3h$ $\delta_{c_{r_3}a_3} = 10 \% \delta_{c_{r_2}a_3(c_{\pm}15k)}$ $1000K \le T_{cr} < 1586K^{(*)}, \\ \delta_{cr_{203}} < \varepsilon_1 \\ t(from T_{cr} \ge 1000K) > 3h$ $\delta_{c_{r_2}a_3} = 10 \% \delta_{c_{r_2}a_3(c_{\pm}15k)}$ $\delta_{cr_{203}} < \varepsilon_1 \\ t(from T_{cr} \ge 1000K) > 3h$ $w_{c_{r_2}a_3} = 0$ $\delta_{cr_{203}} = 0$ $\frac{dw_{c_{r_2}a_7}}{dt^{e_7}} = 0$ $T_{cr} \ge 1586K$ $\delta_{cr_{203}} = 0$	CondicionesOxidación del cromoOxidación del zirconio $T_{G} < 1000K$ $\delta_{c_{x_0,n}} = w_{c_{x_0,n}} = 0$ $\delta_{c_{x_0,n}} = w_{c_{x_0,n}} = 0$ $1000K \leq T_{G} < 1586K^{(1)}, \delta_{0,203} < \epsilon_1$ $\delta_{c_{x_0,n}} = \epsilonucación 1$ Sin oxidación, 0% $\delta_{0,203} < \epsilon_1$ $\delta_{c_{x_0,n}} = 10.9\% \delta_{c_{x_0,n}(\epsilon_1.5\%)}$ $\delta_{n,r_{0,n}} = 0.0 \cdot \delta_{n,ron-coated}^{n,r_{0,n}} = 0.0 \cdot \delta_{n,ron-coated}^{n,r_{0,n}} = 0.0 \cdot \delta_{n,r_{0,n}}^{n,r_{0,n}} = 0.0 \cdot \delta_{n,r_{0,n}}^{n,r_{$

CSN

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Modelo de verificación

- RELAP input:
 - Vertical pipe
 - 9 axial volumes
 - S = 3.685 \cdot 10⁻³m

- SCDAP input:
 - 8 axial nodes, 5 radial intervals
 - 32 fuel rods
 - -1 = 0.1143 m
 - Decay power: experimental data [10]

Results and discussion

• Cases under study, comparing:

Assessment 1. Coating variation with P(LBLOCA) = 39kW

 \rightarrow Assessment 2. Power variation with 5µm Cr coating

2	Dryout	Time after	Reactor	Reactor
	condition	SCRAM	1071	
	reached	$[\mathbf{s}]$	power [%]	power [W]
	LBLOCA: $\sim 4\%$	50	4.22%	3.898E+04
	IBLOCA: $\sim 2\%$	1330	2.00%	1.85E + 04
	SBLOCA: ~1.8%	1930	1.80%	1.66E + 04
	$1\mathrm{h}$	3600	1.47%	1.36E + 04
	2h	7200	1.21%	1.12E + 04
	4h	14400	1.00%	9.21E+03
	$6\mathrm{h}$	21600	0.89%	8.27E+03
	10h	36000	0.78%	7.23E+03
	24h	86400	0.61%	5.60E + 03
	72h	259200	0.45%	4.13E+03

21

Madrid, 29 de febrero de 2024

DE CATALUNYA BARCELONATECH

Implementación y verificación

Fase	Condiciones	Oxidación del cromo	Oxidación del zirconio	Verif.
#1	T _{Cr} < 1000K	$\delta_{c_{r_{1}o_{2}}} = w_{c_{r_{1}o_{2}}} = 0$	$\delta_{c_{r,Q_2}} = w_{c_{r,Q_2}} = 0$	ОК
#2	1000K ≤ T_{Cr} < 1586K ^(*) , δ _{Cr2O3} < $ε_1$ t(T_{Cr} ≥ 1000K) < 1.5h	$\delta_{c_{r_2 o_3}}$ Ecuación 1 $w_{c_{r_2 o_3}}^{r_2 o_3}$ Ecuación 2	Sin oxidación, 0% $\delta_{zr_{o_2}} = 0.0 \cdot \delta_{zr_{fi}}^{non-coated}$ $w_{zr_{o_2}}^{zr_{o_2}} = 0.0 \cdot w_{zr_{o_2}}^{zr_{fi} \oplus n-coated}$	ОК
#3	1000K ≤ T_{Cr} < 1586K ^(*) , δ _{Cr2O3} < ε ₁ 1.5h < t(T_{Cr} ≥1000K) ≤ 3h	$\delta_{c_{r_2 o_3}} = 10 \% \delta_{c_{r_2 o_3}(t_{=}^{-1.5h})}$ $W_{c_{r_2 o_3}} = 10 \% W_{c_{r_2 o_3(t_{=}^{-1.5h})}}$	10% de la oxidación de Zr sin recubrimiento: $\delta_{z_{r_{o_2}}} = 0.1 \cdot \delta_{z_{r_{o_2}}}^{non-coated}$ $w_{z_{r_{o_2}}}^{z_{r_{o_2}}} = 0.1 \cdot w_{z_{r_{o_2}}}^{non-coated}$	ОК
#4	1000K ≤ T_{Cr} < 1586K ^(*) , δ _{Cr2O3} < ε ₁ t(from T_{Cr} ≥1000K) > 3h		25% de la oxidación de Zr sin recubrimiento: $\delta_{z_{r_{o_{2}}}} = 0.25 \cdot \delta_{z_{r_{o_{2}}}}^{non-coated}$ $w_{z_{r_{o_{2}}}}^{z_{r_{o_{2}}}} = 0.25 \cdot w_{z_{r_{o_{2}}}}^{n\theta n-coated}$	ОК
#5	δ _{Cr2O3} ≥ ε ₁	$ \begin{split} \delta_{c_{r_2 o_3}} &= 0 \\ w_{c_{r_2 o_3}} &= 0 \\ \frac{dw_{c_{r_2 o_3}}}{dt} &= 0 \end{aligned} $	100% de la oxidación de Zr sin recubrimiento: $\delta_{zr_{o_2}} = \delta_{zr_{o_2}non-coated}^{non-coated} + \varepsilon_1$ $w_{zr_{o_2}} = w_{zr_{o_2}}^{non-coated} + w_{Cr_2O_3}(\varepsilon_1)$	ОК
#6	T _{Cr} ≥1586K	$ \begin{aligned} \delta_{c_{r_2 o_3}} &= 0 \\ w_{c_{r_2 o_3}}^{c_{r_2 o_3}} &= 0 \\ \frac{dw_{c_{r_2 o_3}}^{c_{r_2 o_3}}}{dt} &= 0 \end{aligned} $	100% de la oxidación de Zr sin recubrimiento: $\delta_{zr_{o_2}} = \delta_{zr_{o_2}non-coated}^{non-coated} + \varepsilon_1$ $w_{zr_{o_2}} = W_{zr_{o_2}}^{non-coated} + w_{Cr_2O_3}(\varepsilon_1)$	ОК
, J	ornadas de I+D+i, Proyectos de investi	gación, CSN, Madrid, 29 de febrero	de 2024 CSN ANT DE C	ERSITAT POLITÈCNI MTALUNYA FLONATECH

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Modelo Westinghouse 4 lazos

BARCELONATECH

Exploración de casos

State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels

- Buscamos casos frontera donde la temperatura de vaina se encuentra alrededor del límite de diseño por tiempos prolongados:
 - Familia de casos LOCA con limitaciones adicionales (DEC)

OECD

1 100 quenching fronts 1000 Cladding temperature (K) 900 800 700 600 500 400 50 100 150 0 200 250 Time(s) UNIVERSITAT POLITÈCNICA CSN **DE CATALUNYA** Jornadas de I+D+i, Proyectos de investigación, CSN, Madrid, 29 de febrero de 2024 ARCELONATECH

Conclusiones y próximos pasos

- Nuevo modelo de oxidación de capas cromadas: diseño, y verificación
 - Posible validación con futuros experimentos en DEGREE, CODEX y/o QUENCH
 - Exploración de escenarios frontera entre DEC-A y DEC-B
- Próximos pasos:
 - Cálculos con modelo Westinghouse 4-lazos
 - Cuantificación de la generación de hidrógeno con y sin la capa cromada

CSN

UNIVERSITAT POLITÈCNIC

DE CATALUNYA

- Análisis de la integridad de las barras de control

References

[1] Coleman, C. E. "The Metallurgy of Zirconium. Volume 1.", IAEA, 2022.

[2] H. Okamoto, "Supplemental Literature Review of Binary Phase Diagrams: B-Fe, Cr-Zr, Fe-Np, Fe-W, Fe-Zn, Ge-Ni, La-Sn, La-Ti, La-Zr, Li-Sn, Mn-S, and Nb-Re," Journal of Phase Equilibria and Diffusion, vol. 37, no. 5. Springer Science and Business Media, LLC, pp. 621–634, 01-Oct-2016.

[3] X. Han, C. Chen, Y. Tan, W. Feng, S. Peng, and H. Zhang, "A systematic study of the oxidation behavior of Cr coatings on Zry4 substrates in high temperature steam environment," Corros. Sci., vol. 174, Sep. 2020.

[4] Q. S. Chen et al., "Microstructure and high-temperature steam oxidation properties of thick Cr coatings prepared by magnetron sputtering for accident tolerant fuel claddings: The role of bias in the deposition process," Corros. Sci., vol. 165, Apr. 2020.

[5] Q. Chen et al., "Microstructure evolution and adhesion properties of thick Cr coatings under different thermal shock temperatures," Surf. Coatings Technol., vol. 417, Jul. 2021.

[6] "SCDAP/RELAP5/MOD3.2 CODE MANUAL VOLUME II: Damage Progression Model Theory", 1997.

[7] Brachet, J. C. et al., "High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and process". Corrosion Science, 2020.

[8] Han, X. et al., "A systematic study of the oxidation behavior of Cr coatings on Zry4 substrates in high temperature steam environment", Corrosion Science, 2020.

[9] J.-C. Brachet and M. Le Saux, "behavior of CR-COATED m5 claddings during and after high temperature steam oxidation from 800°c up to 1500°c (loss-of-coolant accident & design extension conditions)", 2018.

[10] ANS79-1 RELAP5 MOD3 point kinetics model

[11] Carénini L.; Barrachin M. (2023). "IRSN ongoing activities on modelling of Severe Accidents in WCRS with ATF". Consultancy on preparation of the Technical Document on Modelling of Severe Accidents in Water Cooled Reactors with Accident Tolerant Fuels IAEA, Vienna.

[12] Zhang J.; Sim K. (2023). "From FUMAC and ACTOF to ATF-TS: IAEA CRPs on Advanced Technology Fuel Testing, Modelling and Simulation". Consultancy on preparation of the Technical Document on Modelling of Severe Accidents in Water Cooled Reactors with Accident Tolerant Fuels IAEA, Vienna.

[13] Lovasz L. (2023). "ATF capabilities of GRS code package AC". Consultancy on preparation of the Technical Document on Modelling of Severe Accidents in Water Cooled Reactors with Accident Tolerant Fuels IAEA, Vienna.

