Programas de vigilancia radiológica ambiental Resultados 2021

CSN

Colección Informes Técnicos 58.2023

Programas de vigilancia radiológica ambiental Resultados 2021

Autores: Pablo Martínez Vivas

José Antonio Trinidad Ruiz Adriana Ortiz Gómez Belén Sánchez Fernández

Francisco Javier Castillo Tortosa Paloma Ozores Díez

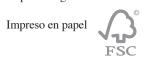
Carmen Rey del Castillo Inmaculada Simón Cirujano

Agradecemos a Mercedes Huerta Rodríguez y José Miguel Larrañaga Amorín su colaboración en la elaboración

su colabolacion en la elabola

de este informe.

Colección Informes Técnicos 58.2023


Colección Informes Técnicos Referencia INT-04.48

Agradecemos a las Áreas de Evaluación de Impacto Radiológico Ambiental y de Coordinación de Operaciones de Emergencia del CSN la información proporcionada. Asimismo, agradecemos la colaboración de las instituciones y laboratorios citados en este documento, y de las personas que desarrollan en ellos su labor, gracias a las cuales se dispone de los resultados publicados en este informe.

© Consejo de Seguridad Nuclear Edita y distribuye: Consejo de Seguridad Nuclear C/ Justo Dorado, 11 28040 Madrid. España www.csn.es

Impresión: Grafo. Industrias Gráficas.

Depósito legal: M-30413-2022

Se presenta aquí el vigesimocuarto informe anual correspondiente a los resultados de los programas de vigilancia radiológica ambiental desarrollados durante el año 2021, acompañado de los datos históricos que constituyen un marco de referencia. Este documento es continuación de los emitidos por el Consejo de Seguridad Nuclear desde que en 1999 inició la publicación de esta serie de informes técnicos que ponen a disposición de ciudadanos e instituciones información sobre los niveles de radiactividad ambiental del país con un cierto nivel de detalle.

El Consejo, en virtud de las funciones que tiene encomendadas, lleva a cabo la evaluación y la vigilancia del impacto radiológico ambiental de las instalaciones nucleares y radiactivas, y vigila la calidad radiológica del medio ambiente de todo el territorio nacional, en cumplimento de las obligaciones del Estado español en esta materia. Otra de las obligaciones del CSN, en la que se enmarca este documento, es informar periódicamente a la opinión pública sobre las materias de su competencia.

La vigilancia radiológica del medio ambiente en España se realiza mediante un sistema de redes, constituido por una red de vigilancia en el entorno de las instalaciones y por una red nacional. En el caso de las instalaciones, los titulares son los responsables de la realización de sus Programas de Vigilancia Radiológica Ambiental (PVRA) siguiendo las directrices del CSN, en función del tipo de instalación y de algunas características del emplazamiento tales como demografía, usos de la tierra y el agua, así como hábitos de la población. El CSN ejerce el control regulador mediante inspecciones periódicas, evaluación de los datos obtenidos y realización de programas independientes, bien de modo directo o mediante encomienda a las comunidades autónomas, lo que permite confirmar su ejecución y supervisar la calidad de los resultados. Por su parte, la Red de Vigilancia Radiológica Ambiental no asociada a instalaciones (Revira) se distribuye por todo el territorio nacional y es gestionada por el Consejo. Está constituida por una Red de Estaciones de Muestreo (REM) y por una Red de Estaciones Automáticas de medida en continuo (REA). Revira proporciona información radiológica sobre la radiactividad de la atmósfera, del suelo, de las aguas (potables, continentales y marinas) y de los alimentos, disponiéndose de resultados desde el año 1993. Los programas de muestreo y análisis radiológico se adaptan a las recomendaciones que establece la Comisión de la Unión Europea con el fin de facilitar a los Estados miembros el cumplimiento de los artículos 35 y 36 del Tratado Euratom^(1,2). El CSN, por su parte, impulsa un continuo proceso de mejora del sistema de calidad de la vigilancia radiológica ambiental en nuestro país, a través de la promoción de encuentros y reuniones con todos los sectores involucrados y organizando campañas de intercomparación analítica desde 1992. También se han publicado 18 procedimientos técnicos que abarcan distintos ámbitos de la vigilancia radiológica ambiental.

Los datos obtenidos en todos los programas de vigilancia son remitidos al CSN y evaluados en el Área de Vigilancia Radiológica Ambiental (AVRA). Un resumen de ellos se incluye en los informes anuales que se presentan al Congreso de los Diputados y al Senado; parte de estos datos se remiten también a la Comisión de la Unión Europea, de acuerdo con lo establecido en el artículo 36 de Euratom⁽³⁾, y a otras instituciones nacionales e internacionales.

En el presente documento se describen brevemente las principales características de las redes y programas de vigilancia radiológica ambiental en España y los resultados obtenidos en la campaña de vigilancia del año 2021. Asimismo, se presenta la proyección temporal de los valores radiológicos más representativos de los últimos 10 o 20 años, según sea para las instalaciones del ciclo de combustible en operación o para las centrales nucleares, respectivamente; 10 años para la vigilancia nacional o, en caso de que no existan datos suficientes, desde el primer año en que estén disponibles. Valores de años previos a los aquí presentados pueden consultarse en ediciones anteriores de esta misma publicación.

¹ Artículo 35: Cada Estado miembro creará las instalaciones necesarias a fin de controlar de modo permanente el índice de radiactividad de la atmósfera, de las aguas y del suelo, así como la observancia de las normas básicas: la Comisión tendrá derecho de acceso a estas instalaciones de control y podrá verificar su cumplimiento y eficacia.

También se incluye un anexo con la actividad emitida a través de los efluentes de las centrales nucleares y de las instalaciones del ciclo del combustible durante el año 2021. Este documento puede obtenerse en soporte electrónico en la página web del Consejo de Seguridad Nuclear: http://www.csn.es.

Hay que destacar que, así mismo, en cumplimiento de las funciones encomendadas al Consejo de Seguridad Nuclear en materia de información pública, y a lo establecido en la Ley 27/2006 por la que se regulan los derechos de acceso a la información en materia de medio ambiente, este organismo ha desarrollado una aplicación informática para dar acceso público a los datos de vigilancia radiológica ambiental en España, a la que se puede acceder a través de la página web del CSN. Actualmente están disponibles para consulta los resultados desde el año 2006 hasta el año 2021 en el siguiente enlace: https://www.csn.es/kprgisweb2/.

En esta edición, como en las de los años 2019 y 2020, se incluye un capítulo relativo a las campañas de intercomparación analítica entre laboratorios relacionados con la vigilancia radiológica ambiental, que desde hace más de 25 años organiza el CSN con el apoyo técnico del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Ciemat). En estos ejercicios participan todos los laboratorios responsables de los resultados analíticos de los distintos programas de vigilancia cuyos datos se presentan en este informe, y se invita también a participar a otros laboratorios nacionales públicos o privados y también de algún otro país, con capacidad de llevar a cabo este tipo de medidas ambientales caracterizadas por los bajos niveles de actividad radiológica. Se presentan de forma breve los resultados de la campaña desarrollada en el año 2021, al que corresponde esta edición, y se describen las características de la nueva campaña en ejecución, cuyos resultados se presentarán en el informe del año siguiente.

La Dirección General de Protección Civil y
Emergencias dispone de una Red de Alerta a la
Radiactividad (RAR) constituida por 804 estaciones
automáticas de medida de tasa de dosis, distribuidas
de manera prácticamente uniforme por el territorio
nacional que se pueden consultar en la siguiente página
web https://www.proteccioncivil.es/coordinacion/
redes/rar; sin embargo, no es objeto de este informe la
descripción de esta red y de sus resultados.

² Artículo 36: La información relativa a los controles mencionados en el artículo 35 será comunicada por las autoridades competentes a la Comisión, a fin de tenerla al corriente del índice de radiactividad que pudiera afectar a la población.

³ Estos datos se encuentran disponibles para su consulta en la base de datos de la Unión Europea en la página web: http://rem.jrc.ec.europa.eu/RemWeb/(pestaña 'Public Area').

Sumario

Introducción	3
Objetivos, alcance y desarrollo de la vigilancia radiológica ambiental	7
Programas de Vigilancia Radiológica Ambiental (PVRA) de las centrales nucleares y de otras instalaciones	12
nucleares y radiactivas Programas de vigilancia radiológica	13
ambiental de ámbito nacional	109
Red de Estaciones Automáticas (REA)	169
Campañas de intercomparación de resultados analíticos obtenidos en laboratorios	
de medidas de baja actividad	177
Anexo	181

Los objetivos básicos de la vigilancia radiológica ambiental son los siguientes:

- Detectar la presencia y vigilar la evolución de los elementos radiactivos y de los niveles de radiación en el medio ambiente, y determinar las causas de los posibles incrementos.
- Estimar el riesgo radiológico potencial para la población.
- Determinar, en su caso, la necesidad de tomar precauciones o de establecer alguna medida correctora.

En el caso concreto de la vigilancia alrededor de las centrales nucleares y de otras instalaciones nucleares y radiactivas del ciclo del combustible nuclear, a los anteriores objetivos se suman:

- Garantizar el cumplimiento de los requisitos legales y reglamentarios impuestos a las instalaciones.
- Verificar la idoneidad del programa de vigilancia de efluentes –de modo que se puedan detectar eventuales fugas inadvertidas– y de los modelos de transferencia de los radionucleidos en el medio ambiente.

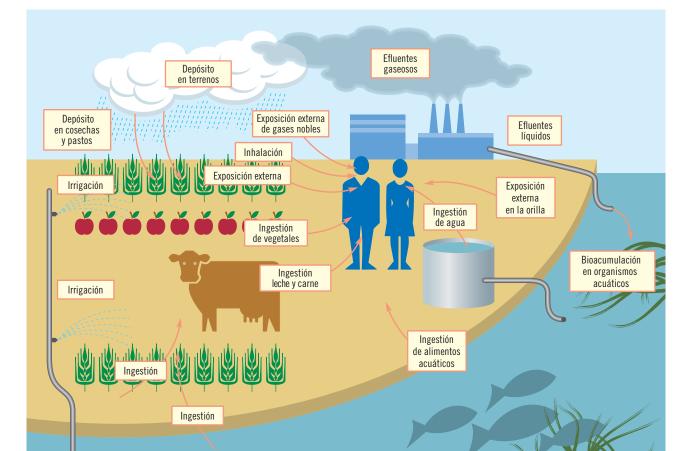


Figura 1.1. Vías de exposición de efluentes gaseosos y líquidos

Para conseguir estos objetivos, el sistema de redes de vigilancia radiológica ambiental establecido en España está integrado por:

- La red de vigilancia implantada en la zona de influencia de las centrales nucleares y otras instalaciones nucleares y radiactivas del ciclo del combustible nuclear, donde los titulares de las instalaciones desarrollan Programas de Vigilancia Radiológica Ambiental (PVRA), a los que el CSN superpone sus programas de control independiente (PVRAIN), bien de modo directo o mediante encomiendas a las comunidades autónomas.
- La red de vigilancia nacional (Revira), no asociada a instalaciones, que gestiona el CSN, y que está constituida por:
 - La Red de Estaciones de Muestreo (REM), donde la vigilancia se realiza mediante programas de muestreo y análisis llevados a cabo por diferentes laboratorios.
 - La Red de Estaciones Automáticas (REA) de medida en continuo, que facilita datos en tiempo real de los niveles de radiación ambiental en distintas zonas del país.

Los programas en el entorno de las instalaciones se han establecido de acuerdo con el tipo de instalación y las características del emplazamiento; los programas de ámbito nacional se han elaborado teniendo en cuenta los acuerdos alcanzados en el marco de los artículos 35 y 36 del Tratado Euratom. La Comisión de la Unión Europea, ante las distintas prácticas seguidas por los Estados miembros, elaboró una recomendación sobre el alcance mínimo de estos programas, publicada en el Diario Oficial de las Comunidades Europeas de 27 de julio de 2000⁽⁴⁾.

Para el desarrollo de los programas de vigilancia se lleva a cabo la recogida y análisis de muestras en las principales vías de transferencia de radionucleidos en aquellos elementos de los ecosistemas que pueden contribuir a la exposición de las personas a las radiaciones (figura 1.1).

En términos generales, estas vías se pueden clasificar como:

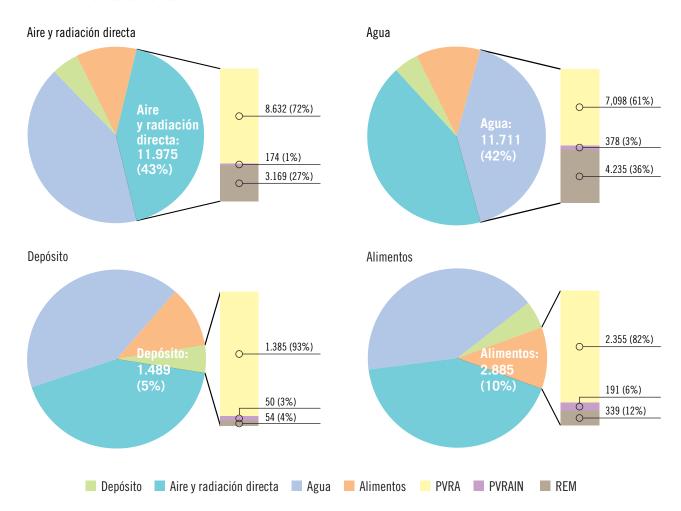
- Vías transitorias. Son aquellas en las que la concentración de un radionucleido es proporcional a su tasa de emisión, por lo que, en principio, existirá concentración mientras exista emisión. Dadas las características de los vertidos, en condiciones normales de operación de las instalaciones, los valores de concentración de actividad de radionucleidos artificiales obtenidos en estas vías suelen estar por debajo del Límite Inferior de Detección (LID), o próximos a este.
- Vías integradoras. Son aquellas en las que la concentración de un radionucleido se incrementa con su emisión continua al medio ambiente, y puede persistir después del cese de la emisión. En estas vías se pueden observar incrementos debidos a la operación continuada de las instalaciones nucleares y radiactivas, o bien como consecuencia de una alteración en los niveles de fondo radiactivo por causas accidentales.
- Vías acumuladoras. Son aquellas que tienen su base en las vías anteriores y en las que la concentración de un radionucleido aumenta en función del tiempo, bien por procesos físicos, químicos o biológicos. En las muestras seleccionadas en estas vías se pueden medir concentraciones de actividad de isótopos no detectados en las vías anteriores.

En la tabla 1.1 se indican las vías que se consideran dentro de los tres grupos mencionados, así como las muestras que se recogen en las distintas redes que integran el sistema de vigilancia radiológica ambiental.

⁴ Recomendación de la Comisión de 8 de junio de 2000 relativa a la aplicación del artículo 36 del Tratado Euratom sobre el control de los índices de radiactividad en el medio ambiente, con vistas a evaluar la exposición del conjunto de la población.

Tabla 1.1. Vías de exposición consideradas en el sistema de redes de vigilancia radiológica ambiental

Tipos de vías		Tipos de muestras	
lipos de vias	PVRA	REM	REA
Transitorias	Aire: Partículas de polvo Yodo en el aire H-3 en vapor de agua C-14 Agua de Iluvia: Depósito húmedo y/o depósito seco Agua superficial Agua potable (origen superficial) Radiación directa: Tasa de dosis	Aire: Partículas de polvo Yodo en el aire Agua superficial Agua potable (origen superficial)	Aire: Partículas de polvo Yodo en en aire Radón Radiación directa: Tasa de dosis
Integradoras	Suelo Sedimentos de fondo y sedimentos de orilla o arena de playa Agua subterránea Agua potable (origen subterránea) Alimentos: Vegetales Leche Carne	Suelo Agua potable (origen subterránea) Alimentos: Leche Dieta tipo	
Integradoras y acumuladoras	Organismos indicadores Peces, mariscos		


En la figura 1.2 se presenta el número total de análisis efectuados en las distintas vías de exposición, así como su distribución porcentual en función de los diferentes programas de vigilancia a los que se asocian.

En esta figura se pone de manifiesto que el mayor número de muestras se recoge en las vías transitorias, es decir, aquellas que indicarían de manera casi inmediata una alteración en los niveles de radiactividad ambiental. En este caso, la

frecuencia de muestreo en las vías integradoras y acumuladoras sería incrementada para precisar la evolución de dichos niveles y tomar las medidas oportunas.

Los resultados de los distintos programas de vigilancia son facilitados al CSN por los responsables de su ejecución y son incorporados a la base de datos Keeper sobre vigilancia radiológica ambiental del CSN.

Figura 1.2. Programas de vigilancia radiologica ambiental. Campaña 2021 Número de analisis realizados en cada vía

PROGRAMAS DE VIGILANCIA RADIOLÓGICA AMBIENTAL (PVRA) DE LAS CENTRALES NUCLEARES Y DE OTRAS INSTALACIONES NUCLEARES Y RADIACTIVAS

2

Los objetivos y criterios empleados en el diseño y desarrollo de los programas de vigilancia radiológica ambiental alrededor de las instalaciones nucleares y radiactivas se encuentran descritos en el Informe Técnico del CSN 4.1999, primer documento publicado de esta serie sobre los resultados de la vigilancia radiológica ambiental en España.

En la figura 2.1 se presenta la localización de los emplazamientos de las instalaciones nucleares. En cada una de ellas se lleva a cabo un PVRA adaptado a las condiciones radiológicas por las que transcurre la instalación en alguna de sus distintas fases.

1. Vigilancia radiológica ambiental alrededor de las centrales nucleares en operación

El conjunto de centrales nucleares españolas corresponde a tres generaciones diferenciadas dentro del programa nuclear.

- Figura 2.1. Instalaciones nucleares y/o radiactivas en España
 - Saelices Quercus)

 Vandellós II

 Vandellós II

 Vandellós II

 Cofrentes

 Centrales nucleares

 Instalaciones del ciclo

 Centros de investigación

- 1ª generación. Centrales proyectadas en la década de los sesenta, cuya construcción se concluyó a finales de esa década o comienzos de los setenta. Corresponden a esta generación las centrales nucleares de Santa María de Garoña (desde mediados de 2013 en fase de cese de explotación), José Cabrera (en fase de desmantelamiento) y Vandellós I (en fase de latencia).
- 2ª generación. Centrales proyectadas a comienzos de la década de los setenta, cuya construcción se inició en la misma época y cuya explotación comercial se emprendió a principios de los ochenta. Corresponden a esta generación las centrales nucleares Almaraz I y II, Ascó I y II, y Cofrentes.
- 3ª generación. Centrales cuya construcción fue autorizada con posterioridad a la aprobación del Plan Energético Nacional en julio de 1979. Proyectadas a finales de la década de los

Centrales nuclea	ares Tipo (MWe)	Fecha
Almaraz I y II	W-PWR (973/984)	1980/83
Ascó I y II	W-PWR (973/966)	1982/85
Cofrentes	GE-BWR (1.096)	1984
Vandellós II	W-PWR (1.009)	1987
Trillo	KWU-PWR(1.066)	1987
Instalación	Tipo	Fecha
	Fábrica de elementos	
Juzbado	combustibles	1985
El Cabril En parada (1992
El Cabril	combustibles Almacenamiento de residuos sólidos	1992
El Cabril En parada (combustibles Almacenamiento de residuos sólidos (p), desmantelamie	1992 ento (d) Fecha
El Cabril En parada (latencia (I)	combustibles Almacenamiento de residuos sólidos (p), desmantelamie	1992 ento (d), Fecha 2005 (l)
En parada (latencia (l)	combustibles Almacenamiento de residuos sólidos (p), desmantelamie Tipo Magnox-CGR	1992 ento (d) Fecha 2005 (l) 2010 (d)
El Cabril En parada (latencia (l)) Instalación Vandellós I José Cabrera	combustibles Almacenamiento de residuos sólidos (p), desmantelamie Tipo Magnox-CGR W-PWR (160) Investigación Fábrica de	1992 ento (d), Fecha 2005 (l) 2010 (d) 2005 (d)
El Cabril En parada (latencia (l) Instalación Vandellós I José Cabrera Ciemat FUA	combustibles Almacenamiento de residuos sólidos (p), desmantelamie Tipo Magnox-CGR W-PWR (160) Investigación Fábrica de concentrados de uranio	1992 Pento (d) Fecha 2005 (l) 2010 (d 2005 (d
El Cabril En parada (latencia (l) Instalación Vandellós I José Cabrera Ciemat	combustibles Almacenamiento de residuos sólidos (p), desmantelamie Tipo Magnox-CGR W-PWR (160) Investigación Fábrica de	1992 ento (d)

setenta, se inició su construcción a partir de 1979 y su explotación a finales de los ochenta. Corresponden a esta generación las centrales nucleares Vandellós II y Trillo.

En la tabla de la figura 2.1 se resumen algunas de las características de las centrales nucleares y de otras instalaciones españolas.

1.1. Descripción de los programas de vigilancia radiológica ambiental

Los programas de vigilancia siguen, en la actualidad, las recomendaciones de la guía de seguridad del CSN publicada en el año 1993, GS-4.1, *Diseño y desarrollo del Programa de Vigilancia Radiológica Ambiental para centrales nucleares*. En las figuras 2.2 a 2.7 se presenta el número de estaciones de muestreo para cada vía de exposición, existentes en los PVRA de cada una de las centrales nucleares en operación durante la campaña de 2021.

A su derecha se incluyen como referencia los criterios establecidos en dicha guía, y al principio de cada gráfico, el número de estaciones recomendado en cada una de las principales vías de exposición de la población.

Por lo general, el número de estaciones de vigilancia que compone el programa de cada instalación, supera la cifra recomendada en la Guía 4.1. Los casos en los que el número de estaciones es inferior a lo establecido son debidos a la necesaria adaptación del PVRA a los usos de la tierra y del agua propios del emplazamiento. De todos modos, estas adaptaciones son justificadas adecuadamente por la instalación, evaluadas por el CSN y aprobadas en su caso.

En la tabla 2.1 se presentan, para cada tipo de muestra, la frecuencia de muestreo y los tipos de análisis efectuados en los programas de vigilancia radiológica ambiental de las centrales nucleares.

Figura 2.2. Número de estaciones de muestreo en los PVRA de las centrales nucleares. Año 2021

Comparación con lo establecido en la Guía 4.1. Aire y Depósito

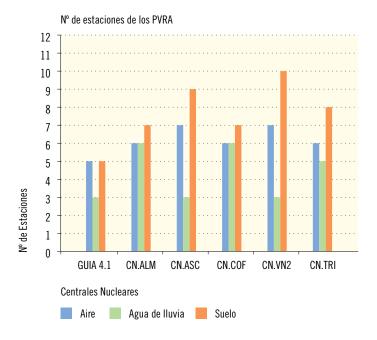
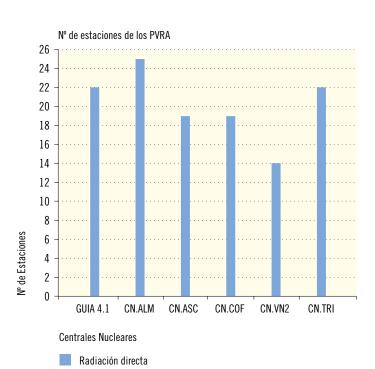



Figura 2.3. Número de estaciones de muestreo en los PVRA de las centrales nucleares. Año 2021

Comparación con lo establecido en la Guía 4.1. Radiación directa

Criterios Guía 4.1

Aire (Partículas de polvo y radioyodos)

- Una muestra en cada uno de los dos puntos con la máxima concentración a nivel del suelo situados en el límite o fuera de la zona de acceso restringido al público.
- Una muestra en cada una de las dos poblaciones cercanas con la máxima concentración prevista a nivel de suelo.
- Una muestra testigo de una localización situada a una distancia entre 15 y 30 km donde la concentración prevista a nivel de suelo sea mínima.

Depósito (Agua de Iluvia y suelo)

Agua de Iluvia (depósito total)

- Una muestra de cada punto donde se recogen partículas en los puntos con la máxima concentración prevista a nivel de suelo.
- Una muestra en el punto testigo donde se recogen partículas.

Suelo (depósito acumulado)

- Una muestra en cada localización donde se recogen partículas.
- Una muestra en cada uno de los dos puntos donde se prevea la máxima depósito.

Criterios Guía 4.1

Radiación directa

- Una estación de medida con dos o más dosímetros, situada en cada una de las 16 direcciones de la rosa de los vientos en aquellos puntos en el límite o fuera de la zona de acceso restringido al público, donde se prevea la máxima concentración a nivel de suelo.
- Una estación de medida con dos o más dosímetros, situada en cada uno de los cinco o más núcleos de población representativos de la zona. Una estación testigo con dos o más dosímetros, situada a una distancia superior a 15 km donde la concentración prevista a nivel del suelo sea mínima.

(Nota: Una estación de medida puede responder a más de un criterio).

Figura 2.4. Número de estaciones de muestreo en los PVRA de las centrales nucleares. Año 2021

Comparación con lo establecido en la Guía 4.1. Agua Potable, Subterránea y Superficial

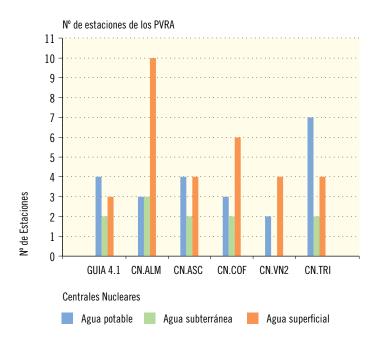
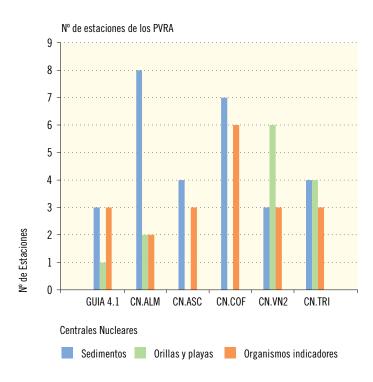



Figura 2.5. Número de estaciones de muestreo en los PVRA de las centrales nucleares. Año 2021

Comparación con lo establecido en la Guía 4.1. Sedimentos de Fondo, de Orilla y Organismos Indicadores

Criterios Guía 4.1

Agua potable

- Una muestra en cada uno de los tres abastecimientos que puedan ser afectados por las descargas.
- Una muestra testigo de un abastecimiento no influido por las descargas.

Agua subterránea

- Una muestra de cada fuente con mayor probabilidad de ser afectada por las descargas.
- Una muestra testigo de una fuente no influida por las descargas.

Agua superficial

- Una muestra en cada uno de dos puntos situados aguas abajo de la descarga después de la mezcla completa, situando el primero de ellos en las inmediaciones de dicha zona.
- Una muestra testigo en un punto situado aguas arriba de la descarga.

Criterios Guía 4.1

Sedimentos

- Una muestra de un punto situado aguas abajo en las inmediaciones de la descarga después de la mezcla completa.
- Una muestra de un punto situado aguas abajo en la zona donde se prevea máxima sedimentación.
- Una muestra testigo en un punto situado aguas arriba de la descarga.

Orillas y playas

 Una muestra de un punto donde se prevea máxima sedimentación situado aguas abajo o, en el caso de emplazamientos costeros, en el entorno de la descarga, donde existan actividades recreativas.

Organismos indicadores

- Una o más muestras en cada uno de dos puntos situados aguas abajo de la descarga después de la mezcla completa, situando el primero de ellos en las inmediaciones de dicha zona.
- Una muestra testigo en un punto situado aguas arriba de la descarga.

Figura 2.6. Número de estaciones de muestreo en los PVRA de las centrales nucleares. Año 2021

Comparación con lo establecido en la Guía 4.1. Alimentos (leche y vegetales)

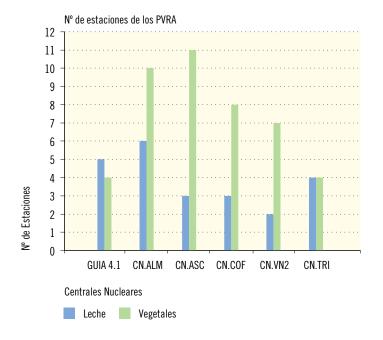
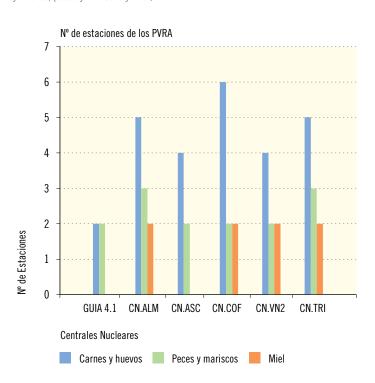



Figura 2.7. Número de estaciones de muestreo en los PVRA de las centrales nucleares. Año 2021

Comparación con lo establecido en la Guía 4.1. Alimentos (carne y huevos, peces y mariscos y miel)

Criterios Guía 4.1

Alimentos

Leche

- Una muestra de granjas lecheras o animales individuales situados en cada una de las tres localizaciones seleccionadas entre aquellas donde se prevea el máximo depósito.
- Una muestra de cada central lechera que recoja la producción de la zona.
- Una muestra testigo de granjas lecheras o animales individuales de una localización situada a una distancia entre 15 y 30 km donde el depósito prevista sea mínima.

Vegetales

- Una muestra de cada especie principal producida en cada una de las dos zonas donde se prevea el máximo depósito.
- Una muestra de cada especie principal irrigada con aguas en las que se viertan efluentes líquidos.
- Una muestra testigo de las mismas especies producidas a distancias entre 15 y 30 km donde el depósito sea menor, e irrigadas con aguas captadas antes del vertido.

Criterios Guía 4.1

Alimentos

Carnes y huevos

- Una muestra procedente de animales de cada especie principal alimentada con productos obtenidos en cada una de las zonas donde se prevea el máximo depósito y/o que beban aguas que puedan estar influidas por los efluentes líquidos.
- Una muestra testigo de los mismos productos procedentes de los animales que consuman alimentos obtenidos entre 15 y 30 km en la zona donde se prevea el mínimo depósito y/o que beban aguas no influidas por los efluentes líquidos.

Peces y mariscos

- Una especie de cada especie principal, tanto en captura comercial como deportiva, en una zona que pueda estar influida por las descargas.
- Una muestra testigo de las mismas especies procedentes de zonas no influidas por las descargas.

Miel

 En la Guía 4.1 no se especifica número de muestras ni frecuencia de muestreo para miel, sin embargo, se incluye este tipo de muestra en aquellas zonas donde la miel sea un componente importante de la dieta.

Tabla 2.1. Programa de vigilancia radiológica ambiental alrededor de las centrales nucleares

Tipo de muestra	Frecuencia de muestreo	Análisis realizados
Aire	Muestreo continuo con cambio de filtro semanal	Actividad beta total Estroncio-90 Espectrometría gamma Yodo-131
Radiación directa	Cambio de dosímetros después de un periodo de exposición máximo de un trimestre	Dosis integrada
Agua potable	Muestreo quincenal o de mayor frecuencia	Actividad beta total Actividad beta resto Estroncio-90 Tritio Espectrometría gamma
Agua de Iluvia	Muestreo continuo con recogida de muestra mensual	Estroncio-90 Espectrometría gamma
Agua superficial y subterránea	Muestreo de agua superficial mensual o de mayor frecuencia y de agua subterránea trimestral o de mayor frecuencia	Actividad beta total Actividad beta resto Tritio Espectrometría gamma
Suelos, sedimentos y organismos indicadores	Muestreo de suelo anual, y sedimentos y organismos indicadores semestral	Estroncio-90 Espectrometría gamma
Leche y vegetales	Muestreo de leche quincenal en época de pastoreo y mensual el resto del año, y cultivos en época de cosecha	Estroncio-90 Espectrometría gamma Yodo-131
Carne y huevos, peces y mariscos, y miel	Muestreo semestral	Espectrometría gamma

1.2. Resultados

Los resultados se presentan en forma gráfica, ordenados por vías de exposición, tipos de muestras y análisis en dos tipos de figuras (a y b). Las figuras cuya numeración se acompaña con la letra "a" recogen la variación temporal de los valores, con objeto de proporcionar un marco de referencia previo al valor obtenido en esta campaña, y en la figura de igual numeración y letra "b" se presentan los valores detallados para la campaña del año 2021. No se presentan gráficas de los isótopos que no han sido detectados en la presente campaña ni de los análisis que no continúan realizándose debido a una adaptación del PVRA.

Los criterios generales aplicados a la presentación de los resultados son los siguientes:

- Del total de resultados analíticos se han seleccionado los correspondientes a los índices de actividad beta total y beta resto, y radionucleidos de origen artificial.
- Se han calculado los valores medios anuales del conjunto de datos obtenidos en todas las estaciones de muestreo de la zona vigilada alrededor de cada instalación, salvo en el caso de organismos indicadores acuáticos recogidos en el entorno de instalaciones que vierten efluentes líquidos a cauces fluviales, en los que se calculan por separado los valores medios de las estaciones situadas aguas arriba y aguas abajo del punto de vertido.
- Se han considerado únicamente los valores que han superado los Límites Inferiores de Detección (LID), por lo que debe tenerse en cuenta que algunos valores medios pueden estar sobrestimados.
- Considerando lo anterior, los gráficos presentan, en escala semilogarítmica, la variación temporal de los valores medios anuales de concentración de actividad obtenidos para cada tipo de muestra en las distintas instalaciones desde 2002 a 2021.

Las discontinuidades entre periodos anuales son un reflejo de que todos los resultados obtenidos en ese periodo han sido inferiores al LID (figuras "a").

- Para la campaña del año 2021, objetivo principal de este documento, se proporciona una información más detallada (figuras "b"), y se indica para las distintas muestras:
 - Número total de análisis realizados.
 - Número de resultados que han sido superiores e inferiores al LID correspondiente.
 - Valores medios, máximos y mínimos de concentración de actividad obtenidos en esta campaña.

1.2.1. Aire

La vigilancia radiológica del aire permite estimar la dosis potencial recibida por la población a causa de la inhalación. Debido a su rápida dinámica, y puesto que constituye el medio primario de recepción de los efluentes gaseosos emitidos a la atmósfera y una vía de transferencia transitoria de radionucleidos en el medio ambiente, el muestreo, tanto de partículas de polvo en aire como de radioyodos, se realiza de modo continuo con cambio de los filtros cada semana.

Índice de actividad beta total

La finalidad de esta medida es detectar de forma rápida cualquier posible cambio en los niveles de radiactividad ambiental y, en su caso, realizar análisis más específicos. La medida se efectúa con frecuencia semanal en cada uno de los filtros de partículas recogidos.

Se obtiene una proporción de valores superiores al LID próxima al 100 %, dado que en este análisis se contabiliza la contribución de la radiación natural (figuras 2.8a y b).

Estroncio-90

Se trata de un radionucleido de origen artificial que puede provenir, tanto del poso radiactivo, fundamentalmente procedente de las pruebas nucleares en la atmósfera que tuvieron lugar en el pasado y otras liberaciones accidentales, como de los efluentes de la central.

El análisis se realiza con periodicidad trimestral sobre el conjunto de filtros acumulados para cada estación de muestreo.

En la campaña de 2021 no se han obtenido valores superiores al LID en ningún programa de las centrales nucleares.

Espectrometría gamma

Se realiza con periodicidad trimestral sobre el conjunto de filtros acumulados para cada estación de muestreo. El análisis de los picos del espectro considerado para cada una de las instalaciones incluye los posibles isótopos emitidos por la central en condiciones normales de operación,

además de otros de origen natural. La medida por espectrometría gamma se efectúa para detectar la presencia de productos de activación o de fisión en la atmósfera como consecuencia del funcionamiento de la instalación. La detección de isótopos emisores gamma de origen artificial es esporádica y cuando se produce, los niveles de actividad obtenidos suelen encontrarse muy próximos al LID.

En la campaña de 2021 no se han obtenido valores de emisores gamma artificiales superiores al LID.

Yodo

El control y seguimiento de los halógenos se lleva a cabo mediante el muestreo continuo de aire sobre cartuchos de carbón activo, de elevada eficiencia para la retención de radioyodos, y su análisis tiene frecuencia semanal. El porcentaje de valores superiores al LID es habitualmente muy bajo.

En la campaña del año 2021 no se ha detectado yodo-131 en ninguna de las muestras.

Figura 2.8a. Partículas de polvo en aire. Evolución temporal del índice de actividad beta total Valores medios en la zona vigilada

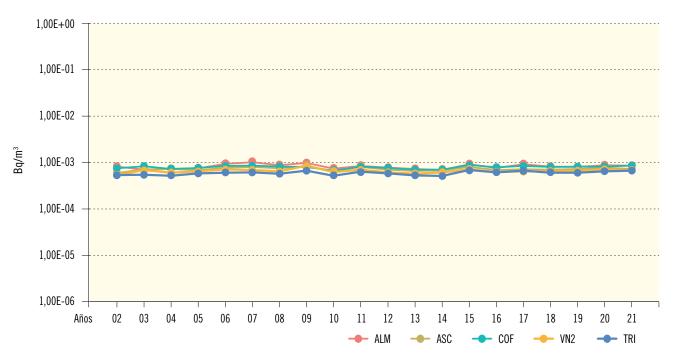


Figura 2.8b. Partículas de polvo en aire. Concentración del índice de actividad beta total (Bq/m³) Valores de la campaña de 2021

Figura 2.9a. Radiación Directa. Dosis Integrada (DTL) Valores medios en la zona vigilada

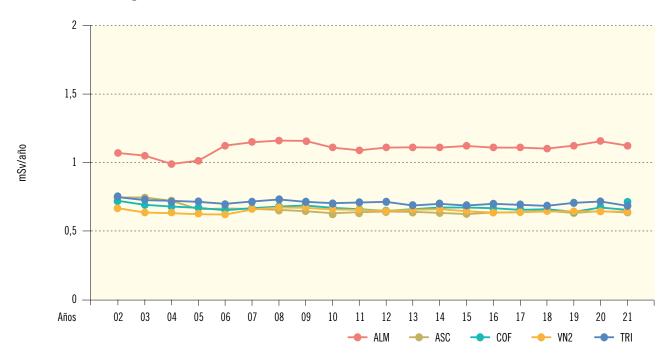



Figura 2.9b. Radiación Directa. Dosis Integrada (DTL). (mSv/año)

Nº total de análisis

Nº de análisis >LID

Nº de análisis <LID

1.2.2. Radiación directa

Dosímetros de termoluminiscencia

Radiación gamma ambiental. En los dosímetros de termoluminiscencia se miden tasas de dosis por exposición ambiental. Estas dosis, en condiciones normales, están relacionadas con las características del terreno y su contenido en isótopos naturales, por lo que el porcentaje de resultados superiores al LID es del 100 % en todos los casos.

Como se puede observar en la figura 2.9a, los valores se encuentran en general próximos a 1 mSv/año y presentan pocas variaciones a lo largo del tiempo. En el PVRA de la central nuclear de Almaraz se encuentran valores ligeramente superiores, que son propios de las características geológicas del área geográfica donde se sitúa, como se confirma tanto con los valores preoperacionales como con los obtenidos en la estación testigo. Los valores medios obtenidos en la campaña de 2021 se mantienen similares a los de la anterior campaña.

1.2.3. Depósito

La vigilancia del depósito como parte del PVRA tiene como objetivo conocer la posible acumulación del material radiactivo emitido en los efluentes gaseosos de la instalación.

Los valores gráficos se han centrado en los resultados correspondientes al depósito acumulado sobre el suelo, si bien en los distintos PVRA se realiza también el muestreo y análisis del depósito total (húmeda y seca) de forma mensual.

Suelo: depósito acumulado

El motivo principal del muestreo de suelo en los PVRA es el estudio de la concentración de isótopos de periodo relativamente largo que puede ir acumulándose en él con el tiempo. La presencia en el suelo de radionucleidos artificiales, tales como estroncio-90 y cesio-137, se relaciona tanto con las emisiones de las instalaciones nucleares, como con el depósito del material radiactivo procedente de las explosiones nucleares en la atmósfera.

Estroncio-90. Una de las principales causas de su presencia en los suelos es el ya mencionado poso radiactivo, por lo que las variaciones que se observan en las figuras 2.10a y 2.10b pueden estar relacionadas con las características edafológicas de cada lugar de muestreo, que condicionan los procesos de retención y migración de los distintos radionucleidos. Al igual que en campañas anteriores, en el año 2021 los valores medios más elevados se han observado alrededor de la central nuclear Vandellós II. Los resultados están comprendidos dentro del rango de los obtenidos en las campañas anteriores y son similares a los alcanzados en la vigilancia de ámbito nacional, realizada fuera de la zona de influencia de las instalaciones.

Espectrometría gamma. Entre los isótopos de origen artificial se detecta cesio-137 con valores de concentración superiores al LID en un porcentaje importante de las muestras analizadas (figura 2.11 a y b). Este isótopo, al igual que el estroncio-90, se detecta tanto en periodos preoperacionales como operacionales, y una de sus procedencias es el mencionado poso radiactivo. Todos los valores obtenidos son varios órdenes de magnitud inferiores al nivel de notificación establecido por el CSN, que representa la concentración de actividad que podría dar lugar a los valores de dosis que limitan la emisión de efluentes durante el funcionamiento de las centrales. Los valores medios de cesio-137 obtenidos en 2021 son similares a los de campañas anteriores (figura 2.11a).

En la campaña de 2021 no se ha detectado ningún otro isótopo de origen artificial.

Figura 2.10a. Suelo. Evolución temporal de la concentración de actividad de Sr-90 Valores medios en la zona vigilada

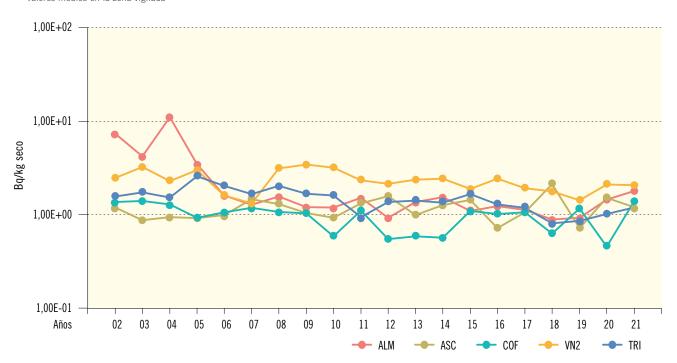


Figura 2.10b. Suelo. Concentración de actividad de Sr-90 (Bq/kg seco)

Figura 2.11a. Suelo. Evolución temporal de la concentración de actividad de Cs-137 Valores medios en la zona vigilada

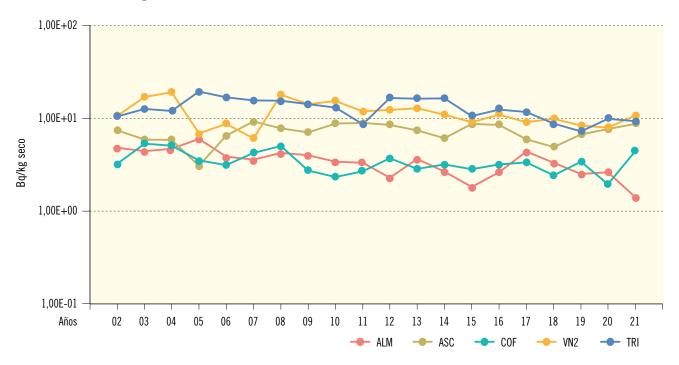
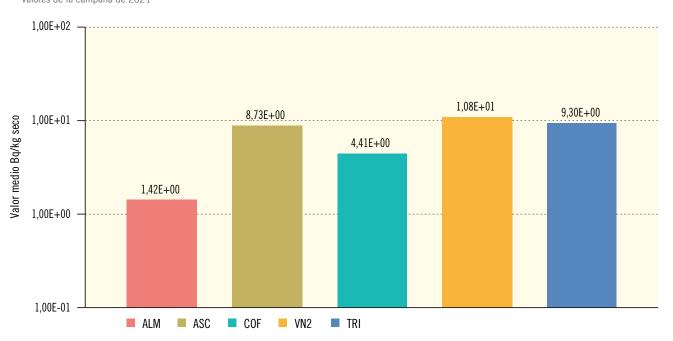



Figura 2.11b. Suelo. Concentración de actividad de Cs-137 (Bq/kg seco) $\,$ Valores de la campaña de 2021

Central Nuclear	ALM	ASC	COF	VN2	TRI
Valor máximo	2,50E+00	4,21E+01	9,05E+00	2,06E+01	1,58E+01
Valor mínimo	6,39E-01	7,11E-01	1,17E+00	1,65E+00	1,04E+00
Nº total de análisis	7	10	7	10	8
Nº de análisis >LID	5	8	4	10	7
Nº de análisis <lid< th=""><th>2</th><th>2</th><th>3</th><th>0</th><th>1</th></lid<>	2	2	3	0	1

1.2.4. Agua

Los principales caminos de exposición de la población a los radionucleidos emitidos por efluentes líquidos y transportados por el agua son la ingestión por consumo de agua potable, peces u otras especies acuáticas, vegetales irrigados y carne de animales que hayan ingerido dichos vegetales o consumido el agua.

Agua superficial

El agua superficial constituye una vía transitoria en la que el muestreo se realiza tanto de forma continua (muestreo proporcional continuo) como de forma discontinua, de acuerdo con una frecuencia preestablecida.

Índice de actividad beta total. El porcentaje de detección de valores de concentración superiores a los LID se sitúa próximo al 100 %. Al igual que en las muestras de aire, la finalidad de esta medida es detectar cualquier posible cambio en los niveles de radiactividad ambiental, y en caso de detectarse, realizar análisis específicos.

En la figura 2.12a se presenta la secuencia de valores de este índice de actividad en agua superficial para cada central nuclear a lo largo del tiempo. Se puede apreciar la diferencia existente entre los valores de actividad beta total en las muestras de la central nuclear Vandellós II (agua de mar) y en el resto de las centrales (aguas continentales). En el caso del emplazamiento costero de la central nuclear Vandellós II, los niveles de actividad del índice beta total son más elevados debido a la salinidad del agua de mar, que incrementa el contenido de potasio-40, emisor beta-gamma de origen natural, y principal contribuyente en este índice de actividad. En general, los valores se mantienen bastante uniformes y los niveles medios de la campaña del año 2021 son similares a los obtenidos en años anteriores (figura 2.12b).

Índice de actividad beta resto. Esta medida proporciona valores de actividad de emisores beta, una vez que le ha sido sustraída la correspondiente al potasio-40. Tanto los valores de concentración como el porcentaje de medidas detectadas son inferiores a los observados para la medida del índice de actividad beta total (figuras 2.13a y 2.13b). Los valores medios obtenidos para este índice de actividad en 2021 son similares a los registrados en años anteriores.

Tritio. La proporción de muestras que presentan valores de concentración superiores al LID, así como los valores de concentración obtenidos, son variables en cada programa de vigilancia. Estas variaciones se relacionan con las características de cada instalación, el volumen y dinámica del medio receptor de los efluentes (río, embalse o mar) y las condiciones meteorológicas (sequía o pluviosidad abundante). En la central de Cofrentes es del tipo de agua en ebullición y vierte menor cantidad de tritio en sus efluentes líquidos que las de agua a presión, se obtienen habitualmente concentraciones medias de actividad de tritio inferiores a aquellas encontradas en las muestras de agua analizadas en las inmediaciones de Almaraz y Trillo (figuras 2.14a y 2.14b). Los valores de tritio en el año 2021 se encuentran en el rango de los valores habituales para este parámetro (figura 2.14a).

Estroncio-90. En la actualidad este análisis se realiza únicamente en las muestras de agua superficial del PVRA de la central nuclear de Ascó, aunque hasta el año 1994 se realizó también en la central de Almaraz. En el año 2021 se ha detectado actividad por encima del LID en una única muestra con un valor similar a los registrados en campañas anteriores (figuras 2.15a y 2.15b).

Espectrometría gamma. En esta campaña todos los valores de concentración de radionucleidos artificiales emisores gamma son inferiores al LID.

Figura 2.12a. Agua superficial. Evolución temporal del índice de actividad beta total Valores medios en la zona vigilada

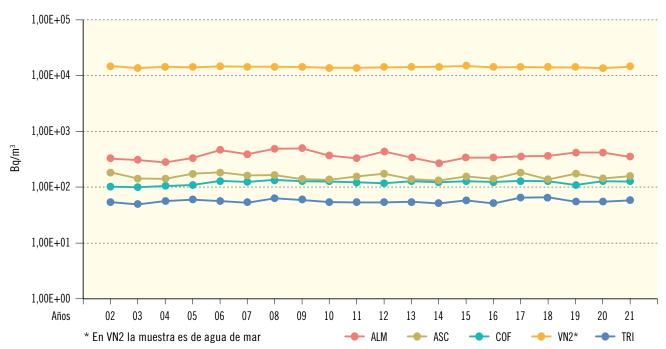
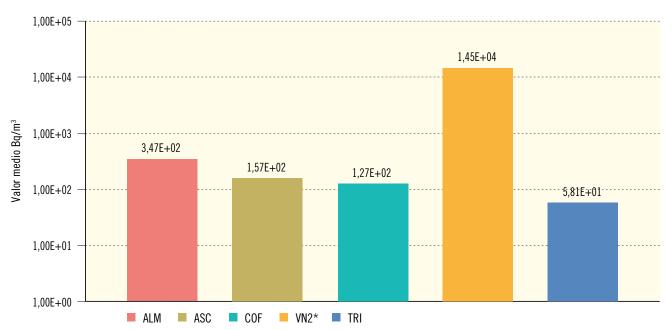



Figura 2.12b. Agua superficial. Concentración del índice de actividad beta total (Bq/m³) Valores de la campaña de 2021

^{*} En VN2 la muestra es de agua de mar

Central Nuclear	ALM	ASC	COF	VN2*	TRI
Valor máximo	9,00E+02	2,15E+02	2,96E+02	1,61E+04	8,34E+01
Valor mínimo	1,71E+02	7,41E+01	6,52E+01	1,32E+04	3,54E+01
Nº total de análisis	108	16	72	16	48
Nº de análisis >LID	108	16	72	16	47
Nº de análisis <lid< th=""><th>0</th><th>0</th><th>0</th><th>0</th><th>1</th></lid<>	0	0	0	0	1

Figura 2.13a. Agua superficial. Evolución temporal del índice de actividad beta resto Valores medios en la zona vigilada

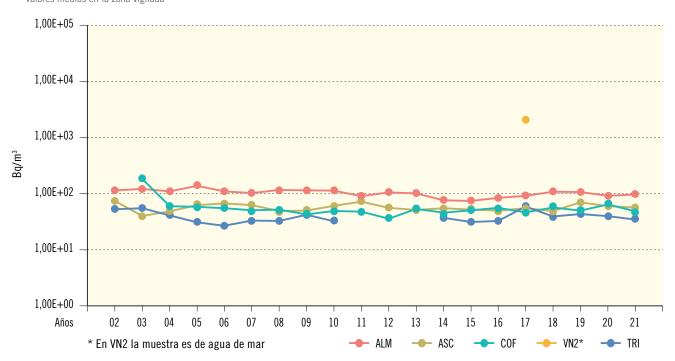
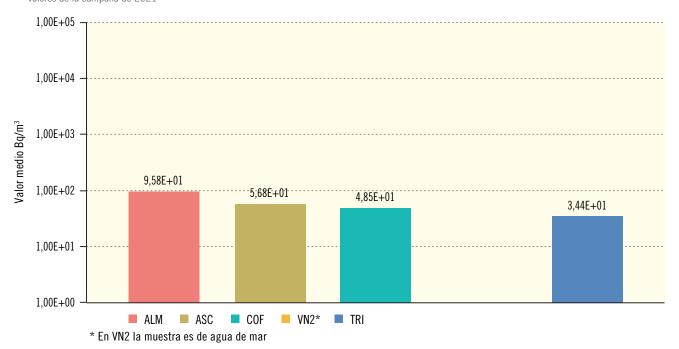



Figura 2.13b. Agua superficial. Concentración del índice de actividad beta resto (Bq/m³) Valores de la campaña de 2021

Central Nuclear	ALM	ASC	COF	VN2*	TRI
Valor máximo	4,00E+02	6,75E+01	7,91E+01		4,09E+01
Valor mínimo	3,73E+01	4,08E+01	3,11E+01		2,62E+01
Nº total de análisis	108	16	72	16	48
Nº de análisis >LID	51	6	15	0	6
Nº de análisis <lid< th=""><th>57</th><th>10</th><th>57</th><th>16</th><th>42</th></lid<>	57	10	57	16	42

Figura 2.14a. Agua superficial. Evolución temporal de la concentración de actividad de H-3 Valores medios en la zona vigilada

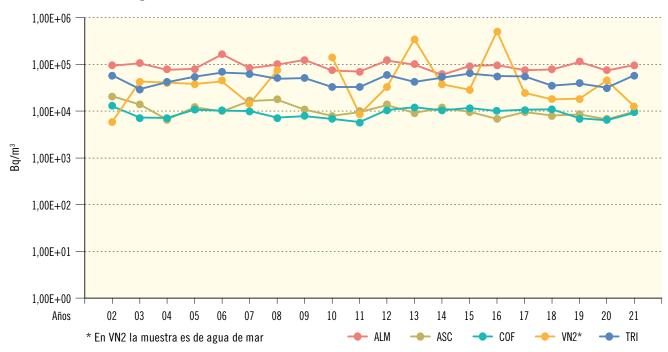
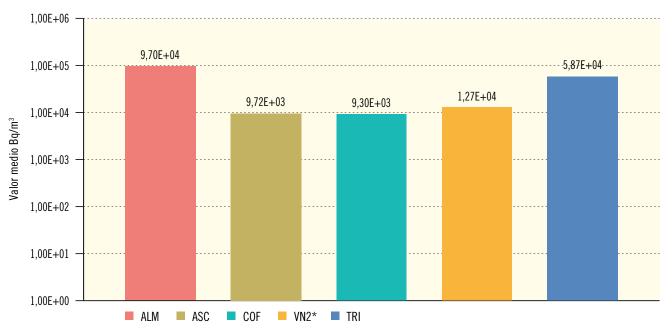



Figura 2.14b. Agua superficial. Concentración de actividad de H-3 (Bq/m³) Valores de la campaña de 2021

* En VN2 la	ı muestra e	s de agua	de mar
-------------	-------------	-----------	--------

Central Nuclear	ALM	ASC	COF	VN2*	TRI
Valor máximo	2,32E+05	1,44E+04	1,58E+04	1,27E+04	2,35E+05
Valor mínimo	7,26E+03	5,51E+03	5,91E+03	1,27E+04	3,04E+04
№ total de análisis	61	16	24	16	16
Nº de análisis >LID	52	5	3	1	12
Nº de análisis <lid< th=""><th>9</th><th>11</th><th>21</th><th>15</th><th>4</th></lid<>	9	11	21	15	4

Figura 2.15a. Agua superficial. Evolución temporal de la concentración de actividad de Sr-90 Valores medios en la zona vigilada

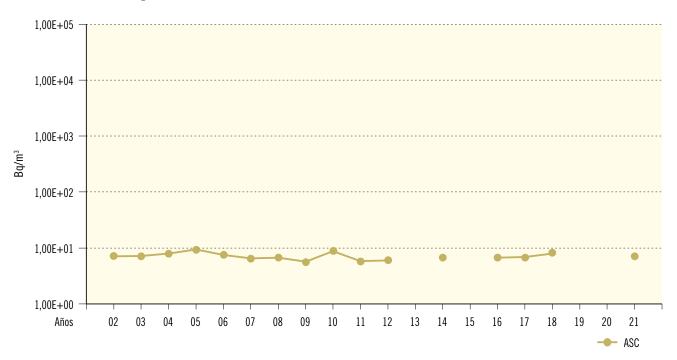
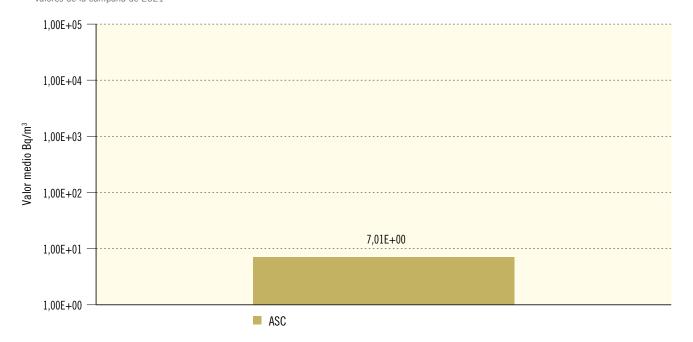



Figura 2.15b. Agua superficial. Concentración de actividad de Sr-90 (Bq/m³) Valores de la campaña de 2021

Central Nuclear	ASC
Valor máximo	7,01E+00
Valor mínimo	7,01E+00
Nº total de análisis	16
Nº de análisis >LID	1
Nº de análisis <lid< th=""><th>15</th></lid<>	15

Agua potable

La recogida de estas muestras tiene como finalidad evaluar la dosis potencial que puede recibir la población como consecuencia de su ingestión. Ninguno de los valores obtenidos en los diferentes análisis realizados en la campaña de 2021 supera los niveles de notificación.

En los emplazamientos costeros no se requiere la vigilancia del agua potable, ya que estas muestras no se ven afectadas por los vertidos líquidos de las instalaciones, por lo que, aunque la central Vandellós II las incluye en su PVRA, en ningún caso los valores de concentración de actividad observados en estas muestras son atribuibles a sus vertidos.

Índice de actividad beta total. Tal y como se observa en las figuras 2.16a y 2.16b, los resultados obtenidos para cada instalación en los distintos periodos de muestreo son bastante homogéneos. Las concentraciones de actividad beta total detectadas son debidas, fundamentalmente, a la concentración de potasio-40 en el agua.

Índice de actividad beta resto. En esta medida, como ya se ha indicado, se determina el contenido de actividad beta, una vez sustraído el aporte correspondiente al potasio-40. En la campaña de 2021 se ha detectado, en todos los programas excepto en Vandellós II, con valores similares a los de periodos anteriores (figuras 2.17 a y 2.17b).

Tritio. Los porcentajes de muestras que superan los LID son variables, al igual que los valores medios anuales de concentración. Los valores obtenidos en 2021 son comparables a los de campañas anteriores (figura 2.18a), y se ha hallado actividad en las muestras de todas las centrales excepto en Vandellós II y en Cofrentes, siendo en Trillo donde se detecta el mayor número de valores y los más elevados (figura 2.18b).

Estroncio-90. Este tipo de análisis se realiza en los distintos PVRA, con excepción de las muestras correspondientes a la central nuclear Vandellós II. En la campaña del año 2021 (figuras 2.19a y 2.19b) se ha detectado estroncio-90 en tres muestras de la central nuclear de Trillo, con un valor próximo al del LID y dentro del rango habitual para este tipo de muestra e isótopo.

Espectrometría gamma. Los valores de concentración de radionucleidos artificiales son sistemáticamente inferiores al LID, por lo que no se incluye representación gráfica.

Sedimentos de fondo y de orilla

El seguimiento del material sedimentado en el cauce de los ríos, embalses, fondo del mar o en las orillas de todos ellos responde a la necesidad de vigilancia de los procesos de acumulación de los radionucleidos no disueltos, que pueden dar lugar a una vía indirecta de exposición a las personas a través de la ingestión de especies acuáticas y por reincorporación al agua con posterior uso como agua de bebida, así como la vigilancia de la exposición directa por la irradiación externa durante la permanencia en las orillas.

Estroncio-90. Además de la posible aportación de estroncio-90 por los efluentes de la central, el principal origen de la presencia de este isótopo es el poso radiactivo. Los valores obtenidos en la campaña del año 2021 son similares a los de campañas anteriores (figuras 2.20a y 2.20b); en esta campaña se ha encontrado actividad únicamente en la central nuclear de Almaraz.

Espectrometría gamma. Entre los radionucleidos de origen artificial que se detectan en sedimentos, se encuentran productos de fisión como el cesio-137, detectado tanto en las muestras recogidas aguas arriba como aguas abajo de las instalaciones, y productos de activación como el cobalto-60.

En la campaña de 2021 se han obtenido valores de cesio-137 en muestras de sedimentos de fondo de todas las centrales y de cobalto-60 en todas excepto en Trillo y en Vandellós II. Así mismo, en la central nuclear Almaraz se ha detectado cesio-134, si bien en concentraciones de actividad muy próximas a los LID y por debajo de los valores históricos. En las figuras 2.21a, 2.22a y 2.23a puede observarse que los

valores medios anuales de cesio-137, cobalto-60 y cesio-134 se mantienen similares a los de años anteriores.

Los sedimentos de orilla se vigilan en los PVRA de Almaraz, Vandellós II y Trillo. En el año 2021 se detecta la presencia de cesio-137 en los sedimentos de orilla de Almaraz y Trillo (figuras 2.24a y 2.24b).

Figura 2.16a. Agua potable. Evolución temporal del indice de actividad beta total Valores medios en la zona vigilada

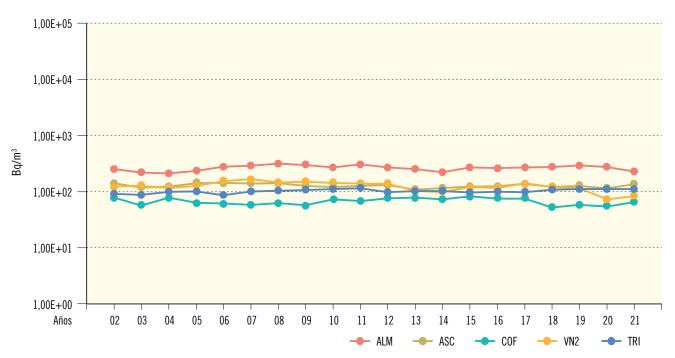
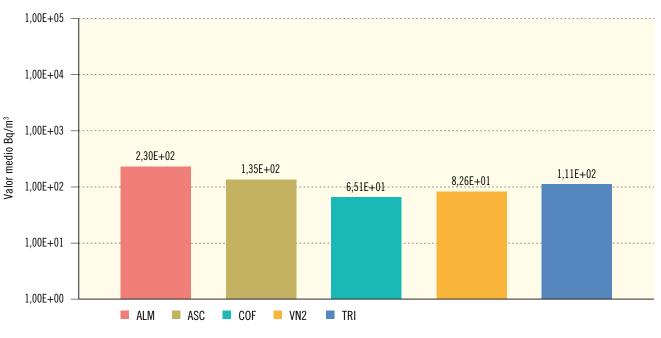



Figura 2.16b. Agua potable. Concentración del índice de actividad beta total (Bq/m³) Valores de la campaña de 2021

Central Nuclear	ALM	ASC	COF	VN2	TRI
Valor máximo	3,71E+02	2,30E+02	9,65E+01	1,02E+02	3,20E+02
Valor mínimo	2,91E+01	7,51E+01	2,76E+01	7,38E+01	4,03E+01
Nº total de análisis	36	47	12	4	28
Nº de análisis >LID	31	47	6	4	28
Nº de análisis <lid< th=""><th>5</th><th>0</th><th>6</th><th>0</th><th>0</th></lid<>	5	0	6	0	0

Figura 2.17a. Agua potable. Evolución temporal del índice de actividad beta resto Valores medios en la zona vigilada

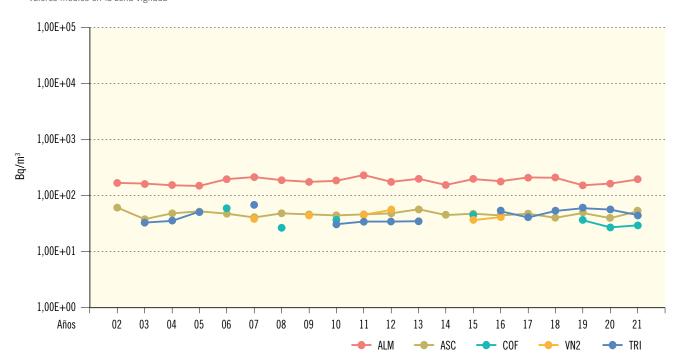
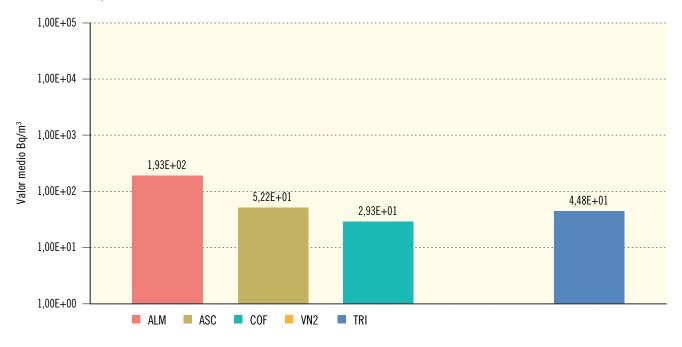



Figura 2.17b. Agua potable. Concentración del índice de actividad beta resto (Bq/m³) Valores de la campaña de 2021

Central Nuclear	ALM	ASC	COF	VN2	TRI
Valor máximo	3,15E+02	9,36E+01	2,93E+01		5,55E+01
Valor mínimo	4,02E+01	2,82E+01	2,93E+01		2,86E+01
Nº total de análisis	36	47	12	4	28
Nº de análisis >LID	14	18	1	0	4
Nº de análisis <lid< th=""><th>22</th><th>29</th><th>11</th><th>4</th><th>24</th></lid<>	22	29	11	4	24

Figura 2.18a. Agua potable. Evolución temporal de la concentración de actividad de H-3 Valores medios en la zona vigilada

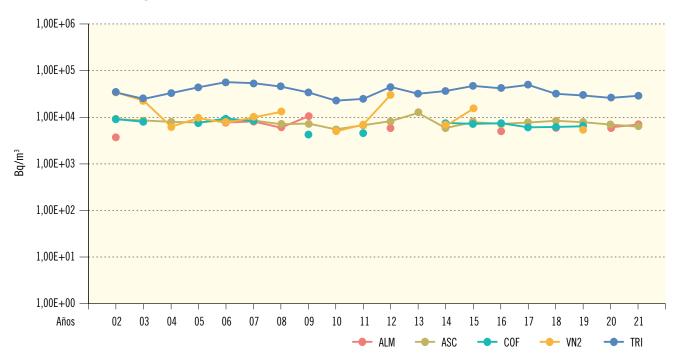


Figura 2.18b. Agua potable. Concentración de actividad de H-3 (Bq/m³) Valores de la campaña de 2021

Central Nuclear	ALM	ASC	COF	VN2	TRI
Valor máximo	6,94E+03	7,30E+03			3,82E+04
Valor mínimo	6,94E+03	5,32E+03			8,82E+03
Nº total de análisis	12	16	12	4	28
Nº de análisis >LID	1	2	0	0	16
Nº de análisis <lid< th=""><th>11</th><th>14</th><th>12</th><th>4</th><th>12</th></lid<>	11	14	12	4	12

Figura 2.19a. Agua potable. Evolución temporal de la concentración de actividad de Sr-90 Valores medios en la zona vigilada

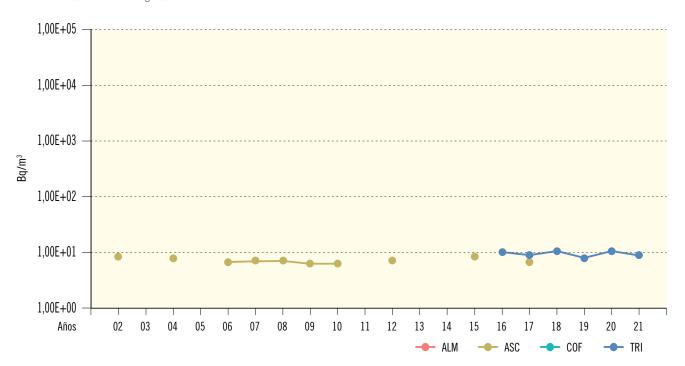



Figura 2.19b. Agua potable. Concentración de actividad de Sr-90 (Bq/m³) Valores de la campaña de 2021

Central Nuclear	ALM	ASC	COF	TRI
Valor máximo				9,09E+00
Valor mínimo				8,46E+00
Nº total de análisis	12	16	12	28
Nº de análisis >LID	0	0	0	3
Nº de análisis <lid< td=""><td>12</td><td>16</td><td>12</td><td>25</td></lid<>	12	16	12	25

Figura 2.20a. Sedimentos de fondo. Evolución temporal de la concentración de actividad de Sr-90 Valores medios en la zona vigilada

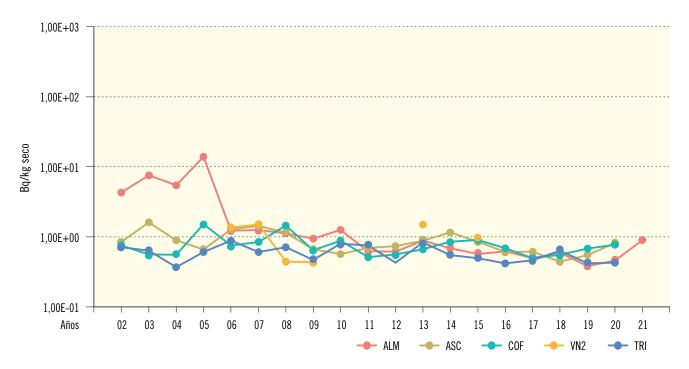
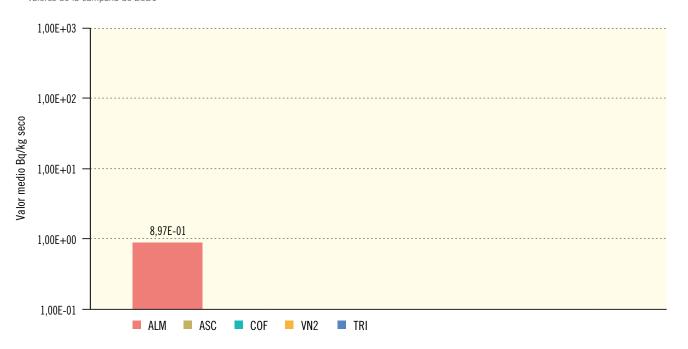
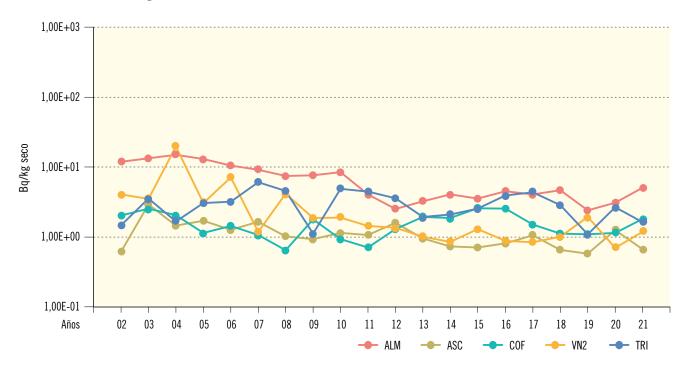



Figura 2.20b. Sedimentos de fondo. Concentración de actividad de Sr-90 (Bq/kg seco) Valores de la campaña de 2021

Central Nuclear	ALM	ASC	COF	VN2	TRI
Valor máximo	1,41E+00				
Valor mínimo	5,16E-01				
Nº total de análisis	16	8	14	6	8
Nº de análisis >LID	4	0	0	0	0
Nº de análisis <lid< td=""><td>12</td><td>8</td><td>14</td><td>6</td><td>8</td></lid<>	12	8	14	6	8

Figura 2.21a. Sedimentos de fondo. Evolución temporal de la concentración de actividad de Cs-137 Valores medios en la zona vigilada



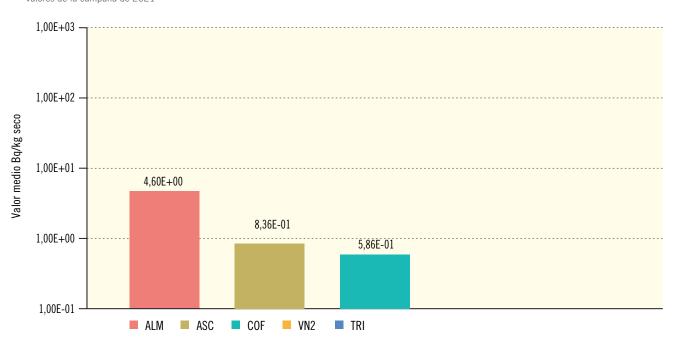

Figura 2.21b. Sedimentos de fondo. Concentración de actividad de Cs-137 (Bq/kg seco) Valores de la campaña de 2021

Figura 2.22a. Sedimentos de fondo. Evolución temporal de la concentración de actividad de Co-60 Valores medios en la zona vigilada

Figura 2.22b. Sedimentos de fondo. Concentración de actividad de Co-60 (Bq/kg seco) Valores de la campaña de 2021

Central Nuclear	ALM	ASC	COF	VN2	TRI
Valor máximo	1,26E+01	1,66E+00	6,13E-01		
Valor mínimo	8,14E-01	4,42E-01	5,59E-01		
№ total de análisis	16	8	14	6	8
Nº de análisis >LID	4	5	2	0	0
Nº de análisis <lid< th=""><th>12</th><th>3</th><th>12</th><th>6</th><th>8</th></lid<>	12	3	12	6	8

Figura 2.23a. Sedimentos de fondo. Evolución temporal de la concentración de actividad de Cs-134 Valores medios en la zona vigilada

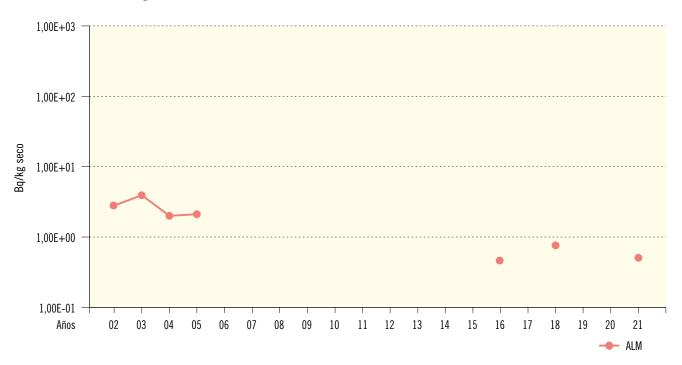
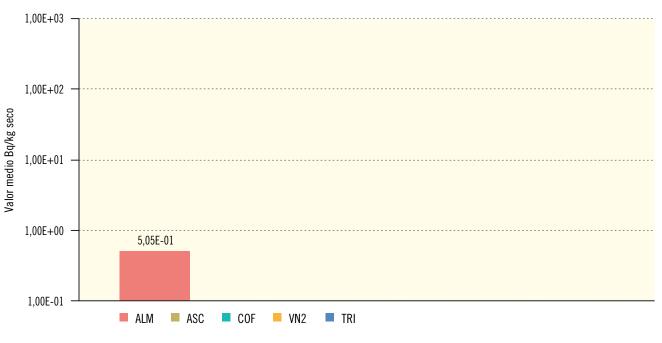
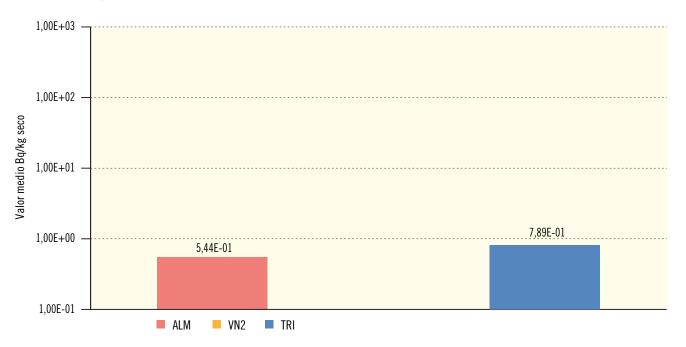



Figura 2.23b. Sedimentos de fondo. Concentración de actividad de Cs-134 (Bq/kg seco) $\,$ Valores de la campaña de 2021



Central Nuclear	ALM	ASC	COF	VN2	TRI
Valor máximo	5,05E-01				
Valor mínimo	5,05E-01				
Nº total de análisis	16	8	14	6	8
Nº de análisis >LID	1	0	0	0	0
Nº de análisis <lid< td=""><td>15</td><td>8</td><td>14</td><td>6</td><td>8</td></lid<>	15	8	14	6	8

Figura 2.24a. Sedimentos de orilla. Evolución temporal de la concentración de actividad de Cs-137 Valores medios en la zona vigilada

Figura 2.24h. Sedimentos de orilla. Concentración de actividad de Cs-137 (Βφ/kg seco) Valores de la campaña de 2021

Central Nuclear	ALM	VN2	TRI
Valor máximo	5,44E-01		1,20E+00
Valor mínimo	5,44E-01		3,58E-01
Nº total de análisis	4	12	8
Nº de análisis >LID	1	0	6
Nº de análisis <lid< th=""><th>3</th><th>12</th><th>2</th></lid<>	3	12	2

1.2.5. Organismos indicadores

Constituyen una vía integradora y acumuladora. Aunque no se trata de vías directas de exposición para las personas, las muestras de organismos indicadores recogidas en los PVRA han sido seleccionadas por su capacidad de bioacumulación de isótopos radiactivos. Al ser muy variadas, se agrupan en plantas acuáticas, plantas de orilla y plantas terrestres para poder presentar los resultados de un modo resumido.

Para cada uno de estos tres grupos se han representado, en las gráficas tipo "a", los valores medios históricos obtenidos para los distintos isótopos y en las distintas instalaciones; en las gráficas tipo "b" se detallan los resultados de la campaña del año 2021; separando en cada una de las centrales nucleares los valores medios de cada radionucleido obtenidos en los puntos testigo, es decir, los situados aguas arriba de la descarga de los efluentes líquidos de la instalación, de los valores medios obtenidos en las estaciones de seguimiento, es decir, los puntos situados aguas abajo del punto de vertido. Hay que hacer notar que en el caso de la central nuclear Vandellós II no se realiza esta separación, ya que, debido a la compleja dinámica de las corrientes marinas, ninguno de los puntos de vigilancia se define como estación testigo. Los resultados procedentes de esta central aparecen en la figura correspondiente como valores medios obtenidos aguas abajo, aunque en este caso sea un valor medio de los resultados obtenidos en todas las estaciones.

Los tipos de muestras recogidas durante 2021 en cada uno de estos grupos son los siguientes:

• Plantas acuáticas. En este grupo se incluyen plantas que viven total o parcialmente sumergidas en el agua. Agrupan las siguientes muestras: *Ceratophyllum* en

la central nuclear de Ascó, y *Posidonia* oceánica en Vandellós II.

- Plantas de orilla. En este grupo se incluyen plantas que viven en las orillas de los ríos. Las muestras de los distintos programas son las siguientes: *Typha* y *Scirpus* en las centrales nucleares de Almaraz, Cofrentes y Trillo, adicionalmente *Phragmites* en Cofrentes.
- Plantas terrestres. Muestras de *Retama* en Almaraz.

Resultados

Los valores medios obtenidos en la campaña de 2021 para las diferentes determinaciones realizadas confirman los niveles obtenidos en campañas anteriores.

En las muestras de plantas acuáticas y plantas de orilla se aprecian diferencias cualitativas y, a veces, también cuantitativas entre las muestras recogidas aguas arriba o aguas abajo de los puntos de vertido de los efluentes.

En el caso de los isótopos estroncio-90 y cesio-137 que, como ya se ha mencionado en otros apartados, provienen del poso radiactivo, además de la aportación por el funcionamiento de la central, se obtienen valores superiores al LID tanto en las muestras recogidas aguas arriba como aguas abajo del punto de vertido para el caso del estroncio-90, con porcentajes elevados de detección en todos los tipos de muestras para el estroncio-90, y más bajos y variables para el cesio-137.

La detección de productos de activación como el cobalto-58 o cobalto-60 se produce de forma esporádica y, exclusivamente, en muestras recogidas aguas abajo de la instalación (figuras 2.25 a 2.27).

Figura 2.25a. Plantas acuáticas Valores medios en la zona vigilada

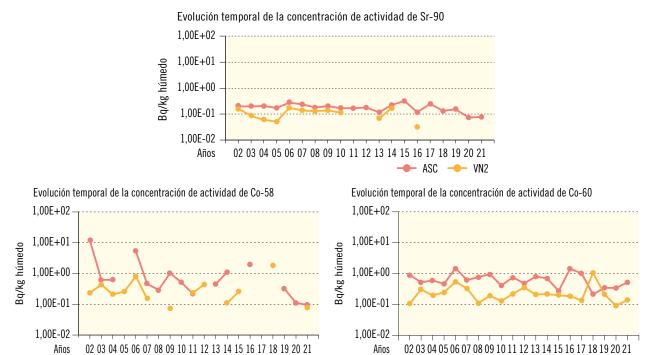
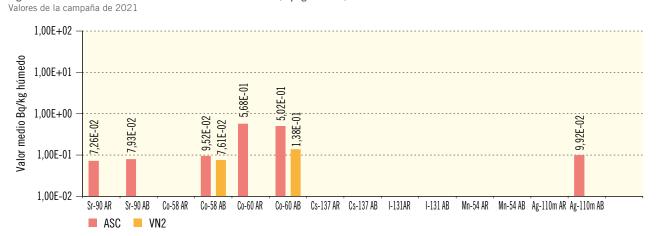
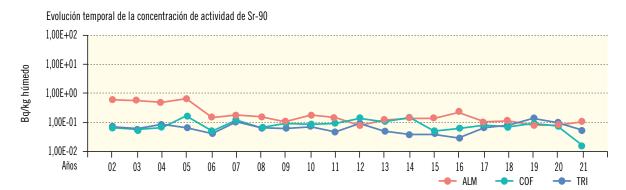



Figura 2.25b. Plantas acuáticas. Concentración de actividad (Bq/kg húmedo)

ASC



ASC

	Sr-90 AR	Sr-90 AB	Co-58 AR	Co-58 AB	Co-60 AR	Co-60 AB	Cs-137 AR	Cs-137 AB	I-131 AR	I-131 AB	Mn-5 4 AR	Mn-54 AB	Ag-110m AR	Ag-110m AB
ASC														
Valor máximo	9,10E-02	1,10E-01		9,99E-02	5,68E-01	6,94E-01								9,92E-02
Valor mínimo	5,41E-02	5,54E-02		9,05E-02	5,68E-01	2,58E-01								9,92E-02
VN2														
Valor máximo				8,20E-02		2,27E-01								
Valor mínimo				7,02E-02		7,65E-02								
Nº total de análisis	2	10	2	10	2	10	2	10	2	10	2	10	2	10
№ análisis >LID	2	4	0	4	1	8	0	0	0	0	0	0	0	1
Nº análisis <lid< td=""><td>0</td><td>6</td><td>2</td><td>6</td><td>1</td><td>2</td><td>2</td><td>10</td><td>2</td><td>10</td><td>2</td><td>10</td><td>2</td><td>9</td></lid<>	0	6	2	6	1	2	2	10	2	10	2	10	2	9

AR: aguas arriba. AB: aguas abajo.

Figura 2.26a. Plantas orilla. Evolución temporal de la concentración de actividad Valores medios en la zona vigilada

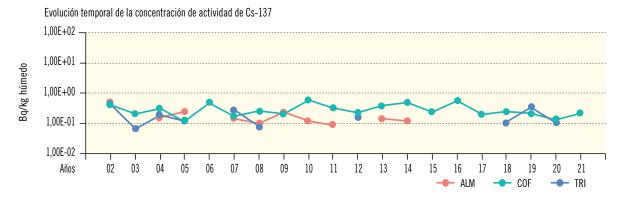


Figura 2.26b. Plantas de orilla. Concentración de actividad (Bq/kg húmedo) Valores de la campaña de 2021

	Sr-90 AR	S r-90 AB	Cs-134 AR	Cs-134 AB	Cs-137 AR	Cs-137 AB
ALM						
Valor máximo	1,30E-01	2,49E-01				
Valor mínimo	4,40E-02	4,32E-02				
COF						
Valor máximo	1,32E-02	1,84E-02				3,58E-01
Valor mínimo	1,32E-02	1,84E-02				1,35E-01
TRI						
Valor máximo	7,17E-02	5,65E-02				
Valor mínimo	6,85E-02	3,82E-02				
Nº total de análisis	8	18	8	18	8	18
№ análisis> LID	7	9	0	0	0	3
№ análisis <lid< td=""><td>1</td><td>9</td><td>8</td><td>18</td><td>8</td><td>15</td></lid<>	1	9	8	18	8	15

AR: aguas arriba. AB: aguas abajo.

Figura 2.27a. Plantas terrestres. Evolución temporal de la concentración de actividad de Sr-90 Valores medios zona vigilada

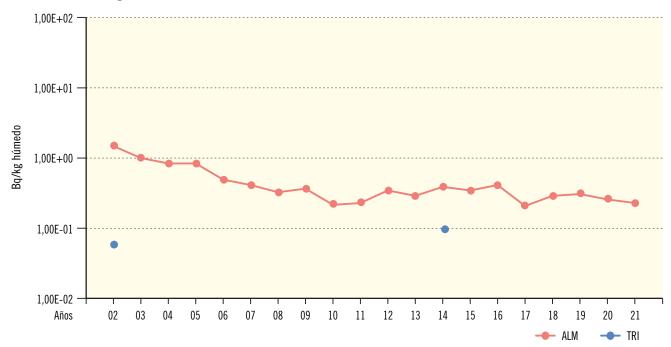


Figura 2.27b. Plantas terrestres. Concentración de actividad (Bq/kg húmedo) Valores de la campaña de 2021

1.2.6. Alimentos

Las muestras que componen esta vía proporcionan datos directos para la evaluación de las dosis por ingestión. Los radionucleidos pueden incorporarse a los vegetales, bien directamente (depósito y riego) o indirectamente a través del suelo, y a los animales mediante la ingestión de su dieta y agua.

El tipo de alimentos considerados en los PVRA es muy variado y está relacionado con los usos de la tierra en el entorno de cada instalación. Los resultados obtenidos en 2021 no han superado los niveles de notificación establecidos por el CSN. Estos, como ya se ha citado anteriormente, representan las concentraciones de actividad que pueden dar lugar a valores de dosis fijados por el CSN para limitar la emisión de efluentes durante el funcionamiento de las centrales.

Leche

El tipo de muestra recogida puede ser leche de vaca, cabra y oveja.

Yodo-131. Este análisis se realiza con una frecuencia quincenal si la leche procede de animales que pastan, y en aquellos periodos en los que son alimentados con forraje la frecuencia disminuye a mensual. En la presente campaña no se ha detectado yodo en ninguna muestra.

Estroncio-90. Se detecta con frecuencia en todos los programas. Los valores de concentración de actividad se mantienen muy parecidos a lo largo de los distintos periodos en cada una de las instalaciones, y así ha sido también en la campaña de 2021. No se aprecian diferencias significativas entre los valores obtenidos en las estaciones de seguimiento y las estaciones testigo. Los niveles relativamente más elevados de estroncio-90 en la leche se obtienen sistemáticamente en muestras recogidas en el entorno de la central de Almaraz (figuras 2.28a y 2.28b). En relación con el tipo de leche, la

leche de cabra mantiene niveles de actividad de estroncio-90 ligeramente más elevados.

Espectrometría gamma. El cesio-137 es el radionucleido de origen artificial que se observa ocasionalmente con valores superiores al LID en muestras de leche. En el año 2021 se ha detectado cesio-137 en dos muestras de la central de Almaraz con valores de actividad similares a los obtenidos en campañas anteriores (figuras 2.29a y 2.29b).

Cultivos de consumo humano

Vegetales de hoja ancha

A diferencia de otros cultivos vegetales, la morfología de los llamados vegetales de hoja ancha (acelga, berza, col, repollo, espinacas, lechuga, etc.) puede facilitar el depósito de radioyodos y aerosoles atmosféricos sobre sus hojas. Dado que se consumen frescos, en ellos se realizan análisis de yodo-131, además de estroncio-90 y espectrometría gamma.

Estroncio-90. Los valores medios de concentración de actividad son variables entre las diferentes centrales y fluctúan a lo largo del tiempo. En la campaña de 2021, se ha detectado este isótopo en todas las centrales excepto en Vandellós II, tanto en las estaciones testigo como en las de seguimiento (figuras 2.30a y 2.30b), se han obtenido unos niveles de actividad similares a los de campañas anteriores.

Espectrometría gamma. Los valores obtenidos para los diferentes isótopos de origen artificial son habitualmente inferiores al LID, y así ha sido en la campaña de 2021.

Yodo-131. En la campaña de 2021 no se han detectado valores superiores al LID.

- Vegetales de hoja no ancha

En este conjunto se agrupa una gran variedad de vegetales de consumo humano como los cereales, frutos, tubérculos, raíces y bulbos. En cada emplazamiento se recogen las especies más representativas de la zona.

Estroncio-90. Los valores medios de concentración de actividad de este isótopo presentan, a lo largo del tiempo y en las distintas zonas vigiladas, una variabilidad menor que la observada en el otro grupo de vegetales considerado. Siempre es menor la proporción de muestras en las que se detecta actividad, hecho que puede ser atribuido al resultado de la resuspensión del estroncio-90 contenido en el suelo sobre las superficies de los vegetales de hoja ancha.

Los valores medios obtenidos en la campaña de 2021 se mantienen en niveles similares a los obtenidos en las últimas campañas (figuras 2.31a y 2.31b).

Espectrometría gamma. De la misma manera que se observa en los vegetales de hoja ancha, no se detectan isótopos de origen artificial en los cultivos de hoja no ancha, excepto para el cesio-137, cuya detección es esporádica. En la campaña de 2021 no se encontró actividad de cesio-137 en ninguna muestra.

Cultivos de consumo animal

Los vegetales de consumo animal constituyen una vía indirecta, ya que los radionucleidos depositados en este tipo de cultivos pueden ser incorporados a los animales mediante su ingestión y estos a su vez ser parte de la dieta de los individuos de la población.

Dentro de este grupo se incluyen principalmente los pastos, las plantas forrajeras, la alfalfa, los granos y los piensos compuestos. Este tipo de muestras se recogen únicamente en las centrales de Almaraz y Vandellós II con una frecuencia anual.

Estroncio-90. Los valores medios obtenidos en la campaña de 2021 se mantienen en

niveles similares a los obtenidos en las últimas campañas (figuras 2.32a y 2.32b).

Espectrometría gamma. Al igual que ocurre en los vegetales de consumo humano, no se detectan isótopos de origen artificial en estos cultivos, excepto para el cesio-137, cuya detección es esporádica. En la campaña de 2021 no se encontró actividad de cesio-137.

Carnes, aves y huevos

Se recogen muestras de carne de vaca, cordero, cabrito, cerdo, jabalí, conejo, aves y huevos, dependiendo de las explotaciones existentes en cada zona vigilada. En cada una de las muestras se realiza una medida de espectrometría gamma. El cesio-137 es el único isótopo de origen artificial para el que, excepcionalmente, se obtienen valores superiores al LID en un pequeño porcentaje de las muestras analizadas, en la campaña de 2021 se ha detectado este isótopo en una única muestra de la central de Trillo con un valor de actividad similar al de campañas anteriores (figuras 2.33a y 2.33b).

Miel

En los PVRA llevados a cabo en las centrales de Trillo, Almaraz, Cofrentes y Vandellós II se recogieron muestras de miel en las que se realizó una espectrometría gamma. A lo largo del desarrollo del PVRA solo se han obtenido valores superiores al LID para radionucleidos de origen artificial correspondientes al cesio-137 de forma esporádica. En la campaña de 2021 no se ha detectado actividad por encima del LID en ninguna muestra.

Peces y mariscos

Las muestras de peces se recogen en los PVRA de todas las centrales. En el caso del emplazamiento costero de la central Vandellós II, se recogen también muestras de mariscos. En cada una de ellas se realiza una medida de espectrometría gamma sobre las partes comestibles (músculo), siempre que sea posible, o sobre los organismos enteros en caso contrario. La proporción de detección de isótopos de origen artificial es baja. Ocasionalmente, se obtienen valores de cesio-137 y, de forma esporádica, cesio-134 y cobalto-60. En la campaña de 2021 se ha

detectado cesio-137 en varias muestras de peces recogidas en el embalse de Arrocampo, al que vierte sus efluentes líquidos la central de Almaraz; todos los valores de concentración son próximos al LID y similares a los obtenidos en campañas anteriores (figuras 2.34a y 2.34b). No se ha detectado actividad por encima del LID en ninguna muestra de mariscos.

Figura 2.28a. Leche. Evolución temporal de la concentración de actividad de Sr-90 Valores medios en la zona vigilada

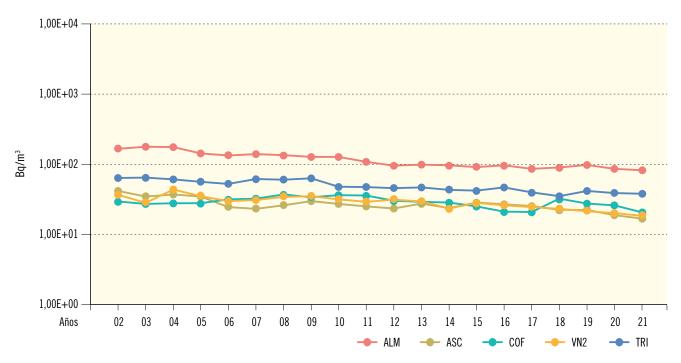
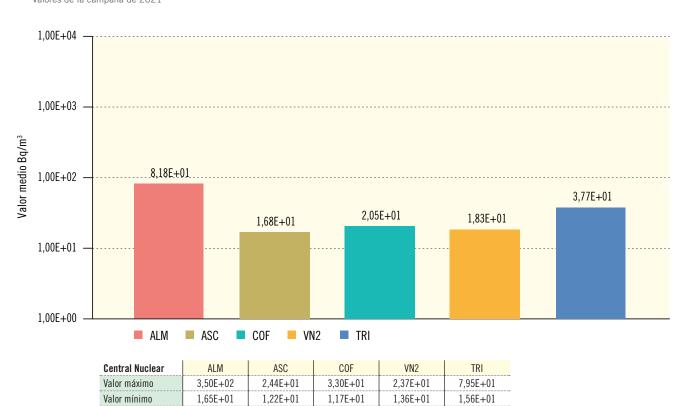



Figura 2.28b. Leche. Concentración de actividad de Sr-90 (Bq/m³) Valores de la campaña de 2021

Nº total de análisis

Nº de análisis >LID

Nº de análisis <LID

Figura 2.29a. Leche. Evolución temporal de la concentración de actividad de Cs-137 Valores medios en la zona vigilada

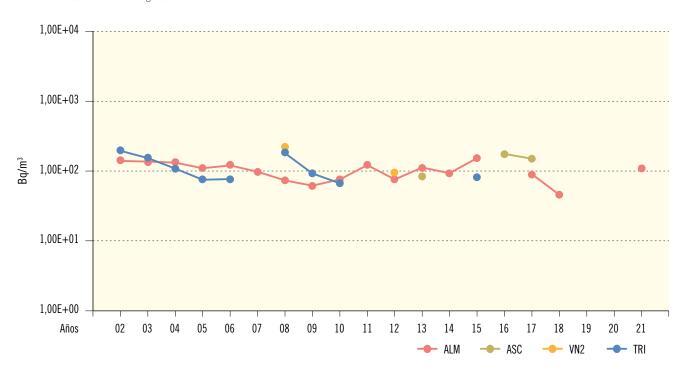
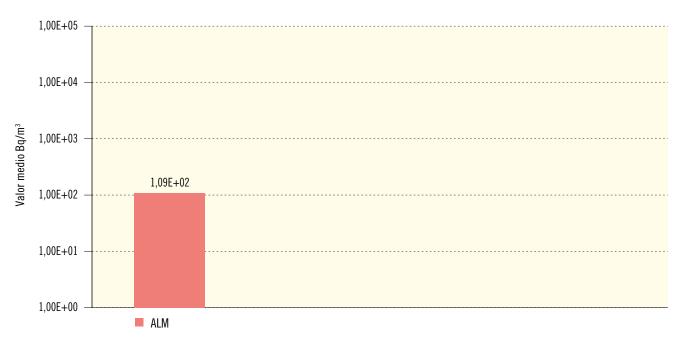



Figura 2.29b. Leche. Concentración de actividad de Cs-137 (Bq/m³) Valores de la campaña de 2021

Central Nuclear	ALM	ASC	COF	VN2	TRI
Valor máximo	1,16E+02				
Valor mínimo	1,01E+02				
Nº total de análisis	78	36	36	25	41
Nº de análisis >LID	2	0	0	0	0
Nº de análisis <lid< td=""><td>76</td><td>36</td><td>36</td><td>25</td><td>41</td></lid<>	76	36	36	25	41

Figura 2.30a. Vegetales de hoja ancha. Evolución temporal de la concentración de actividad de Sr-90 Valores medios en la zona vigilada

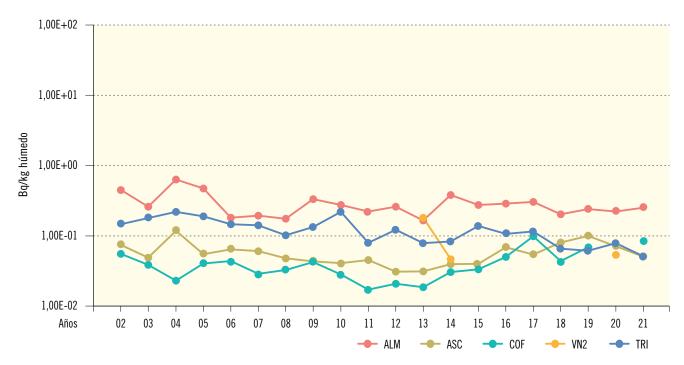


Figura 2.30b. Vegetales de hoja ancha. Concentración de actividad de Sr-90 (Bq/kg húmedo) Valores de la campaña de 2021

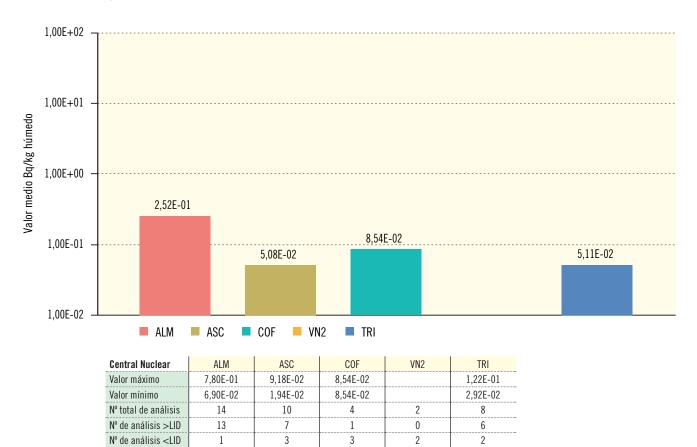


Figura 2.31a. Vegetales de hoja no ancha. Evolución temporal de la concentración de actividad de Sr-90 Valores medios en la zona vigilada

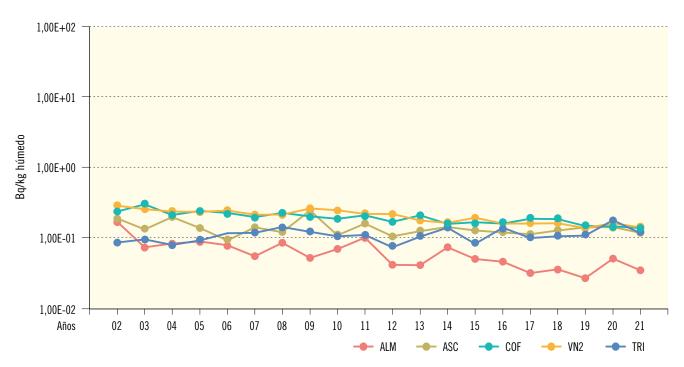


Figura 2.31b. Vegetales de hoja no ancha. Concentración de actividad de Sr-90 (Bq/kg húmedo) Valores de la campaña de 2021

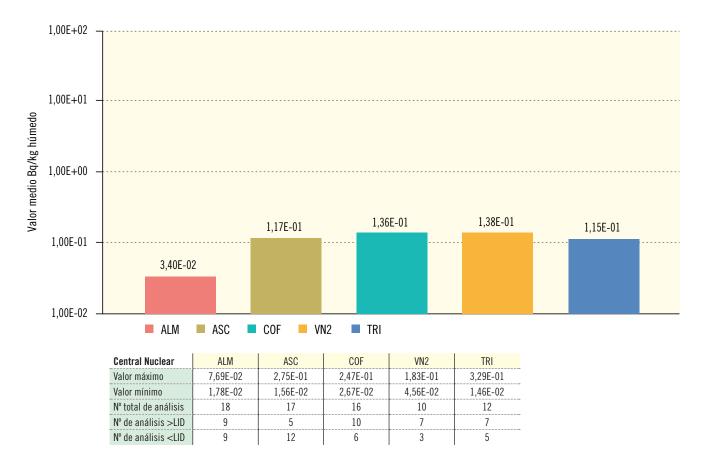


Figura 2.32a. Consumo animal. Evolución temporal de la concentración de actividad de Sr-90 Valores medios en la zona vigilada

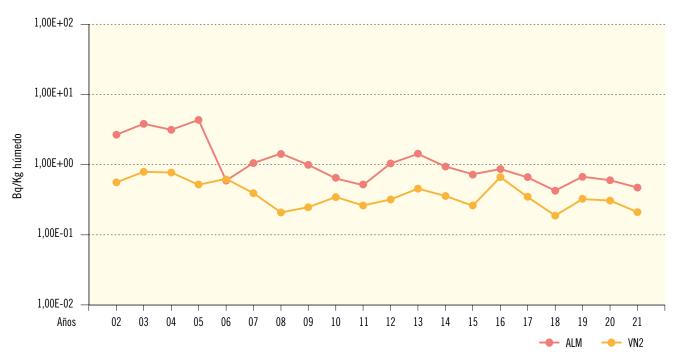


Figura 2.32b. Consumo animal. Concentración de actividad de Sr-90 (Bq/kg húmedo) Valores de la campaña de 2021

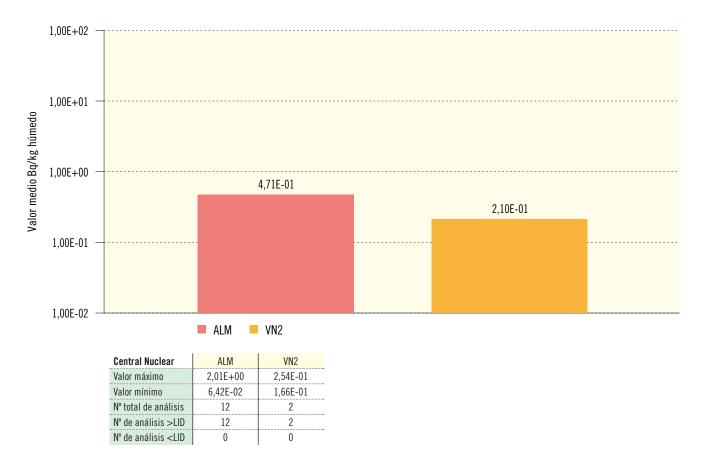


Figura 2.33a. Carne y aves. Evolución temporal de la concentración de actividad de Cs-137 Valores medios en la zona vigilada

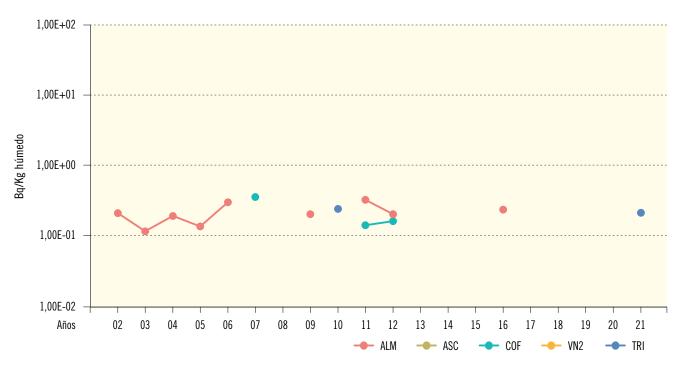


Figura 2.33b. Carne y aves. Concentración de actividad de Cs-137 (Bq/kg húmedo) Valores de la campaña de 2021

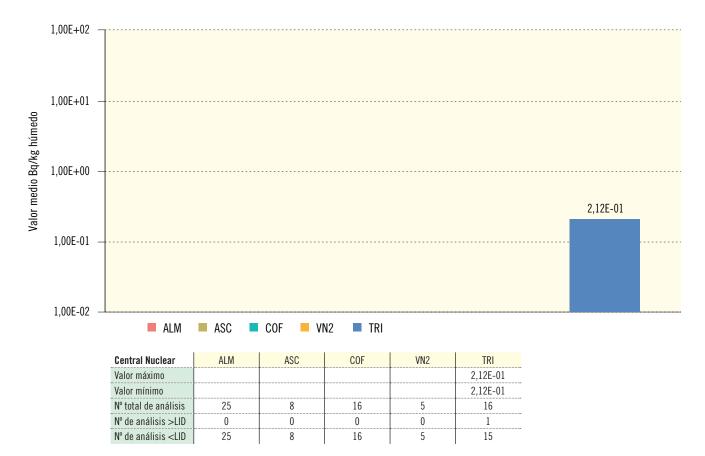
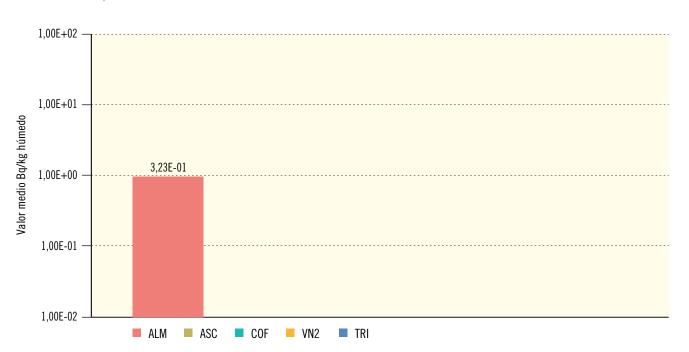



Figura 2.34a. Peces. Evolución temporal de la concentración de actividad de Cs-137 Valores medios en la zona vigilada

Figura 2.34b. Peces. Concentración de actividad de Cs-137 (Bq/kg húmedo) Valores de la campaña de 2021

Central Nuclear	ALM	ASC	COF	VN2	TRI
Valor máximo	3,23E-01				
Valor mínimo	1,39E-01				
Nº total de análisis	16	2	4	4	6
Nº de análisis >LID	4	0	0	0	0
Nº de análisis <lid< td=""><td>12</td><td>2</td><td>4</td><td>4</td><td>6</td></lid<>	12	2	4	4	6

2. Vigilancia alrededor de otras instalaciones nucleares y radiactivas en operación

Las instalaciones en operación incluidas en este apartado corresponden a la fábrica de elementos combustibles de Juzbado y al centro de almacenamiento de residuos radiactivos sólidos El Cabril. Sus características se describen en la tabla 2.2.

2.1. Descripción de los programas de vigilancia radiológica ambiental

Los programas de vigilancia se han establecido teniendo en cuenta la normativa nacional adaptada al tipo específico de estas instalaciones (GS/JEN-3) (GS/JEN-9) (GS/CSN-4.1) y otra normativa internacional más específica, como el NUREG/ CR-5054, "Recommendations to the NCR for alternative Methods of Low-Level Radioactive Waste Disposal. Environmental Monitoring and Surveillance Programs" para Sierra Albarrana y para Juzbado documentación relativa de EE. UU. para instalaciones análogas. Como en el caso de las centrales nucleares, los PVRA de estas instalaciones se han ido actualizando en función de los resultados obtenidos, la experiencia acumulada y teniendo en cuenta los cambios producidos en los usos de la tierra y del agua en el emplazamiento. En la figura 2.35 se presenta el número de estaciones de muestreo seleccionadas para cada instalación y vía de exposición. En la tabla 2.3 se incluyen los tipos de muestras y los análisis realizados en cada una de ellas.

2.2. Resultados

Para el tratamiento de los resultados se han tenido en cuenta, básicamente, los mismos criterios indicados en el apartado 1.2 para las centrales nucleares, considerando en este caso también los resultados correspondientes al índice de actividad alfa total y los de radionucleidos de origen natural cuya concentración se pueda ver alterada por las características de las emisiones procedentes de cada instalación. De igual modo que en las centrales nucleares, los resultados obtenidos en los PVRA se presentan en escala semilogarítmica, para cada una de las distintas vías de exposición, tipos de muestras y análisis.

Los análisis que se realizan en las diferentes muestras están en función de los efluentes de cada una de las instalaciones, por lo que unas veces los análisis coinciden y en otros casos son específicos de una instalación concreta. Por este motivo, en la representación gráfica de los resultados, a diferencia de lo que se ha hecho para las centrales nucleares, se incluye en cada tipo de muestra una figura en la que se representa para cada instalación la evolución histórica de los valores medios de todos los análisis realizados y unas tablas con información más detallada correspondiente al año 2021. La discontinuidad entre dos periodos anuales, al igual que se ha comentado en los resultados de los PVRA de las centrales nucleares, significa que los valores obtenidos han sido inferiores al LID.

Tabla 2.2. Características de las instalaciones nucleares y radiactivas del ciclo de combustible en operación

Instalación	Localidad (provincia)	Tipo de instalación	Actividad	Puesta en marcha
Fábrica de elementos combustibles de Juzbado	Juzbado (Salamanca)	Nuclear		PEP (OM de 14/01/85). Vigente renov. 8ª prórroga autorización de explotación y de fabricación de comb. por OM 21/07/16
El Cabril	Sierra Albarrana (Córdoba)	Nuclear	Almacén de residuos radiactivos sólidos de media y baja actividad	PEP (OM de 09/10/92). Vigente autorización de explotación por OM 05/10/01

Tabla 2.3. PVRA alrededor de instalaciones nucleares y radiactivas del ciclo de cobustible en operación. Tipos de análisis

Tipo de muestra	Análisis realizados		
	Juzbado	El Cabril	
Aire	Actividad α total Espectrometría α de uranio	Actividad β total Sr-90 Espectrometría γ H-3, C-14	
Radiación directa	Dosis integrada	Dosis integrada	
Agua de lluvia, subterránea, superficial y potable	Actividad α total Actividad β total y β resto (en agua superficial y potable) Espectrometría α de uranio (excepto en agua de lluvia y sondeos)	(Agua subterránea y superficial) Actividad β total Actividad β resto Sr-90 Espectrometría γ H-3, C-14, Tc-99, I-129, Ni-63	
Suelo	Actividad α total Espectrometría α de uranio	Sr-90 Espectrometría γ	
Sedimentos y organismos indicadores	Actividad α total Espectrometría α de uranio	Actividad β total, Ni-63 (sedimentos) Sr-90 (organismos indicadores) Espectrometría γ H-3 (organismos indicadores) C-14 (organismos indicadores)	
Alimentos	Actividad α total Espectrometría α de uranio	Sr-90 (peces y carnes) Espectrometría γ	

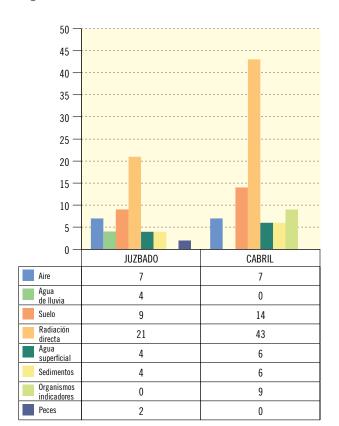
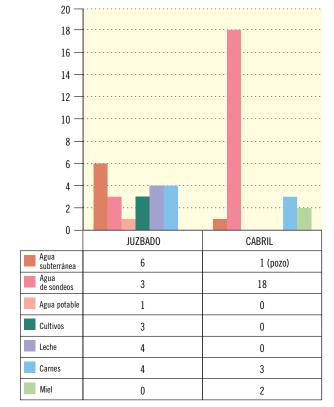
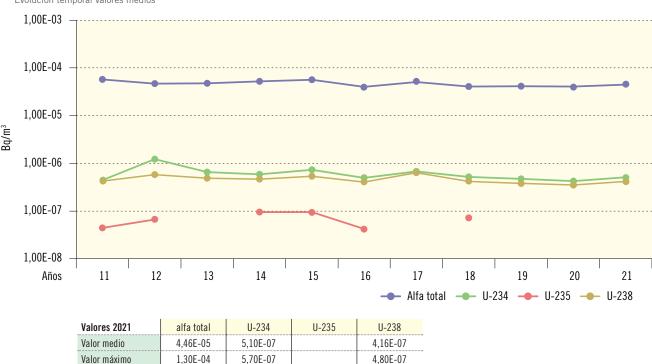




Figura 2.35. Nº de estaciones de muestreo en los PVRA de las instalaciones del ciclo de combustible

0

Figura 2.36. Juzbado. Particulas de polvo en aire. Valores de concentración de actividad (Bq/m³) Evolución temporal valores medios

En la fábrica de elementos combustibles de Juzbado se trabaja con uranio enriquecido, es decir, con un contenido del isótopo uranio-235 más alto del que existe en el uranio natural y, por lo tanto, en las muestras del PVRA se analiza el índice de actividad alfa total para poder detectar de forma rápida cualquier posible cambio en los niveles de radiactividad ambiental, y se lleva a cabo una medida de espectrometría alfa de uranio para controlar el posible aumento de la concentración de sus isótopos.

7,53E-06

360

349

11

4,20E-07

0

Valor mínimo

Nº total de análisis

Nº de análisis >LID

Nº de análisis <LID

En el Cabril, que es un almacén de residuos sólidos, se han establecido los análisis del PVRA teniendo en cuenta el contenido isotópico de los residuos que allí se almacenan y su periodo de semidesintegración.

La valoración global de los resultados que se incluyen a continuación permite concluir que, en aquellas vías de exposición que pueden verse afectadas por la emisión de los efluentes de la instalación, no se detectan incrementos radiológicamente significativos sobre el fondo radiológico.

2.2.1. Aire

3,50E-07

Juz.bado

El muestreo de partículas de polvo es continuo y los filtros se cambian cada semana. En cada uno se determina el índice de actividad alfa total y, anualmente, sobre los 52 filtros semanales acumulados de cada punto de muestreo, se realiza un análisis isotópico de uranio. En el caso de que la actividad alfa total acumulada de las muestras semanales del primer semestre supere un valor establecido, se realizará un análisis isotópico de uranio.

El porcentaje de resultados por encima del LID en la campaña de 2021 es superior al 95 % para

el índice de actividad alfa total y del 100 % para los isótopos de uranio-234 y uranio-238. No se ha detectado actividad de uranio-235 por encima del LID en ninguna de las siete muestras analizadas. Los valores medios se mantienen similares a los de anteriores periodos operacionales (figura 2.36).

El Cabril

El muestreo de partículas de polvo en aire es continuo y el cambio de filtro semanal. En cada uno de ellos se realiza un análisis del índice de actividad beta total y, en los filtros acumulados de cada punto de muestreo en un trimestre, se llevan a cabo determinaciones de espectrometría gamma y estroncio-90. Para la medida del tritio presente en el vapor de agua atmosférico se realiza un muestreo, haciendo circular, de modo continuo, una cantidad de aire a través de dos trampas de gel de sílice, con coloración indicadora del grado de saturación de humedad, en la que se retiene el

vapor de agua mediante absorción. Las trampas se cambian cada dos o tres semanas. El muestreo de carbono-14 se lleva a cabo haciendo borbotear el aire a través de dos botellas de dos litros que contienen una disolución de Ba (OH)₂; las botellas se cambian cada dos o tres semanas.

En el año 2021 la proporción de valores superiores al LID para el índice de actividad de carbono-14 es del 100 %, al igual que para la actividad beta total, mientras que no se ha detectado en esta campaña actividad de tritio ni estroncio-90. Los valores medios de actividad detectada se mantienen en niveles similares a campañas anteriores (figura 2.37).

A lo largo de los años, los valores obtenidos en la espectrometría gamma para los isótopos de origen artificial han sido inferiores a los LID.

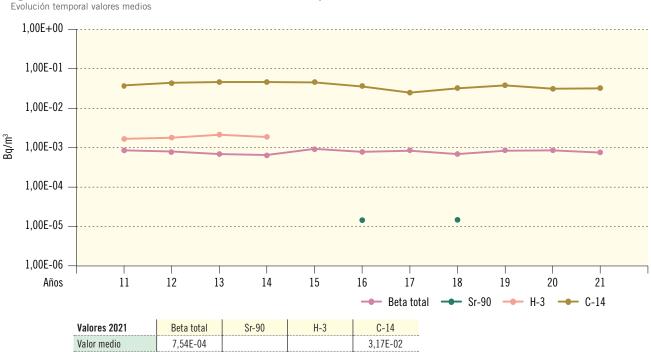


Figura 2.37. El Cabril. Aire. Valores de concentración de actividad (Bq/m³)

Valor máximo

Valor mínimo

Nº total de análisis

Nº de análisis >LID

Nº de análisis <LID

1,71E-03

3,74E-05

364

363

1

28

0

28

28

0

28

5,30E-02

1,01E-02

28

28

0

2.2.2. Radiación directa

Dosímetros de termoluminiscencia

Radiación gamma ambiental. Como ya se ha comentado, mediante la dosimetría de termoluminiscencia se registran tasas de dosis muy relacionadas con las características del terreno y su contenido en isótopos naturales emisores gamma. Esta contribución hace que el porcentaje de resultados superiores al LID sea de un 100 % en todos los casos. La vigilancia en ambas instalaciones se realiza mediante dosímetros que integran un periodo de exposición trimestral.

Juz.bado

Los valores medios obtenidos son muy estables a lo largo de los años (figura 2.38).

El Cabril

Desde el año 2009, la vigilancia con dosímetros de termoluminiscencia se amplió al entorno de las nuevas estructuras para almacenamiento de residuos de muy baja actividad. El valor medio obtenido en la campaña de 2021 se mantiene estable en relación a campañas anteriores (figura 2.39).


2.2.3. Depósito

Suelo: depósito acumulado

Juz.bado

En cada muestra se determina el índice de actividad alfa total y se realiza un análisis isotópico de uranio. En el año 2021, el porcentaje de resultados superiores al LID es del 100 %

Figura 2.38. Juzbado. Radiación directa. Dosis integrada (DTL, mSv/año) Evolución temporal valores medios



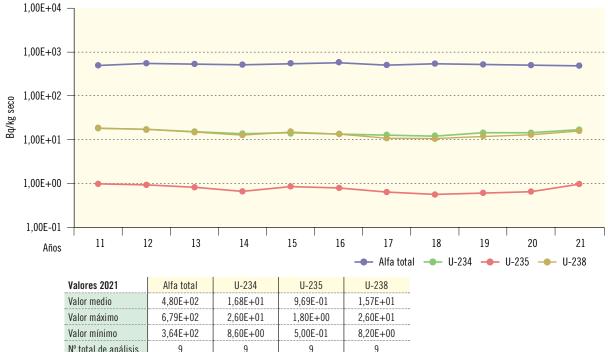
Figura. 2.39. El Cabril. Radiación directa. Dosis integrada (DTL, mSv/año) Evolución temporal valores medios

para el índice de actividad alfa total y para todos los isótopos de uranio; uranio-234, uranio-238 y uranio-235. Los valores se mantienen dentro del rango de las concentraciones históricas observadas (figura 2.40).

El Cabril

En cada muestra se realiza una espectrometría gamma y un análisis de estroncio-90. Entre los isótopos de origen artificial analizados en la espectrometría gamma, únicamente se han detectado valores superiores al LID para el cesio-137. Tanto este isótopo como el estroncio-90, que tienen como uno de sus posibles orígenes el poso radiactivo, se han detectado en un porcentaje próximo al 100 %. Los valores de concentración se mantienen similares a lo largo de los años (figura 2.41).

2.2.4. Agua


Agua superficial

Juz.bado

Dispone de muestreadores de recogida de agua en continuo en tres puntos y en cada uno de ellos se obtiene mensualmente una muestra compuesta con el agua recogida diariamente. En un cuarto punto se recoge, con frecuencia mensual, una muestra simple. En cada muestra se determinan los índices de actividad alfa total, beta total y beta resto, y en la muestra de junio de cada punto se realiza un análisis isotópico de uranio.

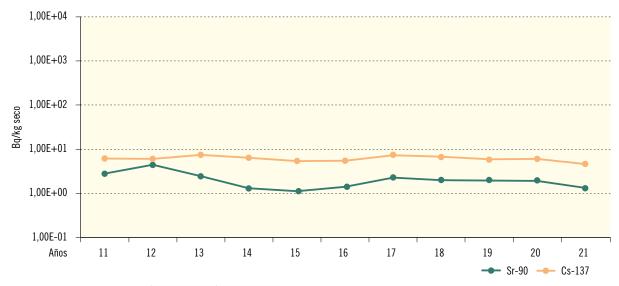

Los valores medios de concentración de actividad alfa total e isótopos de uranio; uranio-234, uranio-235 y uranio-238 (figura 2.42) son similares a los de campañas anteriores.

Figura 2.40. Juzbado. Suelo. Valores de concentración de actividad (Bq/kg seco) Evolución temporal valores medios

Valores 2021	Alfa total	U-234	U-235	U-238
Valor medio	4,80E+02	1,68E+01	9,69E-01	1,57E+01
Valor máximo	6,79E+02	2,60E+01	1,80E+00	2,60E+01
Valor mínimo	3,64E+02	8,60E+00	5,00E-01	8,20E+00
Nº total de análisis	9	9	9	9
Nº de análisis >LID	9	9	7	9
Nº de análisis <lid< th=""><th>0</th><th>0</th><th>2</th><th>0</th></lid<>	0	0	2	0

Figura 2.41. El Cabril. Suelo. Valores de concentración de actividad (Bq/kg seco) Evolución temporal valores medios

Sr-90	Cs-137
1,34E+00	4,59E+00
2,36E+00	1,49E+01
6,50E-01	5,09E-01
14	14
14	13
0	1
	2,36E+00 6,50E-01 14

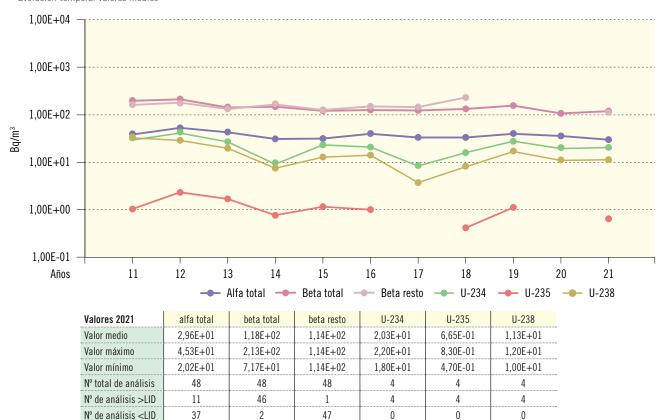


Figura 2.42. Juzbado. Agua superficial. Valores de concentración de actividad (Bq/m³) Evolución temporal valores medios

El Cabril

Las muestras de agua se recogen con frecuencia trimestral en seis estaciones, alejadas de la orilla, a ser posible en los puntos de máximo flujo y por debajo de la superficie, a unos 30-50 cm de profundidad. En cada una de ellas se determinan los valores de concentración de actividad de isótopos emisores gamma, índices de actividad beta total y beta resto, tritio, carbono-14, estroncio-90 y níquel-63, análisis este último que se ha incluido desde el año 2005. Adicionalmente, desde 1994 se analiza yodo-129 y tecnecio-99 en el 10 % de las muestras recogidas.

En esta campaña, tanto los niveles de actividad como la proporción de medidas detectadas, se mantienen en consonancia con años anteriores (figura 2.43).

Agua potable

Esta vía no se incluye en el PVRA del almacén de residuos sólidos El Cabril por no existir captaciones de agua para consumo humano en la zona vigilada.

Juzbado

Se recogen muestras simples de agua potable que proviene del río Tormes en una estación, con frecuencia mensual. En cada muestra se determinan los índices de actividad alfa total, beta total y beta resto y, semestralmente, se realiza un análisis isotópico de uranio. Además, se recogen muestras de agua subterránea con frecuencia trimestral en una fuente de acceso público cuyas aguas se utilizan, a veces, con fines medicinales. En estas muestras se realiza la determinación del índice de actividad alfa total y, con frecuencia semestral, un análisis isotópico de uranio.

Figura 2.43. El Cabril. Agua superficial. Valores de concentración de actividad (Bq/m³) Evolución temporal valores medios

Como se aprecia en la figura 2.44 (no se representan los resultados de las muestras de la fuente), los valores medios obtenidos en 2021 para las determinaciones del índice de beta total y de los isótopos uranio-234 y uranio-238 entran dentro de los rangos hallados en los años anteriores. En el año 2021 no se ha detectado actividad por encima del límite inferior de detección de los índices de actividad alfa total, beta resto y del isótopo uranio-235.

En cuanto a la fuente vigilada, en la campaña del año 2021 la concentración del índice de actividad alfa total no ha superado el valor de 0,1 Bq/L, valor paramétrico establecido en el Real Decreto 314/2016 por el que se establecen los criterios sanitarios de la calidad de agua de consumo humano.

Sedimentos de fondo

Juzbado

Las muestras se recogen, con frecuencia anual, en los mismos cuatro puntos donde se toma el agua superficial. En cada una se determina el índice de actividad alfa total y se realiza un análisis isotópico del uranio.

El porcentaje de resultados superiores al LID para todas las determinaciones es del 100 %. Los valores medios correspondientes a la campaña de 2021 se encuentran dentro del rango de valores históricos (figura 2.45).

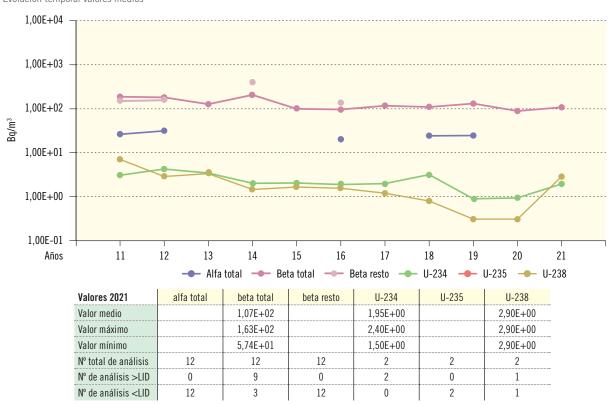
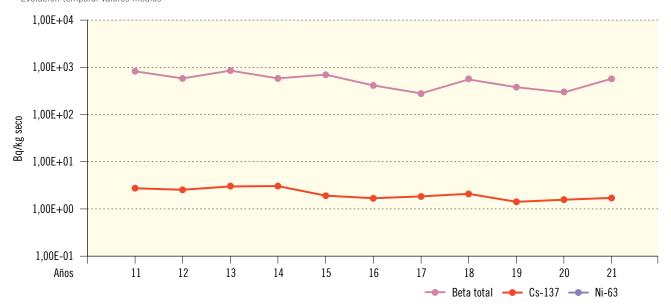


Figura 2.44. Juzbado. Agua potable. Valores de concentración de actividad (Bq/m³) Evolución temporal valores medios

Figura 2.45. Juzbado. Sedimentos de fondo. Valores de concentración de actividad (Bq/kg seco) Evolución temporal valores medios



El Cabril

Las muestras de sedimentos se recogen en los mismos puntos en los que se toma agua superficial, con frecuencia anual. En cada muestra se realiza la determinación del índice de actividad beta total y de los isótopos emisores gamma por espectrometría y, además, desde el año 2005 se incluye la medida de níquel-63. El porcentaje de valores superiores al LID para la determinación del índice de actividad beta total es siempre del 100 %. En la espectrometría gamma, los valores

de los isótopos de origen artificial resultan inferiores al LID, excepto en el caso del cesio-137 que se ha detectado en 2021 en el 100 % de las muestras analizadas (figura 2.46). Hasta ahora no se ha encontrado actividad de níquel-63 por encima del límite inferior de detección en ninguna muestra. Considerando los valores obtenidos en las diferentes estaciones de muestreo, no se aprecia una influencia de la instalación en ellas, como es de esperar al no estar prevista en esta instalación la emisión de efluentes líquidos.

Figura 2.46. El Cabril. Sedimentos de fondo. Valores de concentración de actividad (Bq/kg seco) Evolución temporal valores medios

Valores 2021	Beta total	Cs-137	Ni-63
Valor medio	5,69E+02	1,70E+00	
Valor máximo	7,04E+02	3,74E+00	
Valor mínimo	4,34E+02	6,41E-01	
Nº total de análisis	6	6	6
Nº de análisis >LID	6	6	0
Nº de análisis <lid< td=""><td>0</td><td>0</td><td>6</td></lid<>	0	0	6

2.2.5. Alimentos

Las muestras de alimentos analizadas en estas dos instalaciones se seleccionan en función de la producción y de los hábitos alimentarios de su entorno y se agrupan en los siguientes tipos: carne y aves, vegetales de consumo humano, peces, leche y miel.

Carnes y aves

Se recogen carnes de cerdo, oveja, ciervo y perdiz, dependiendo de las explotaciones ganaderas o cinegéticas existentes en cada zona vigilada.

Juz.bado

Se recogen muestras de cerdo y oveja en cuatro puntos de muestreo sobre las que se realiza una determinación del índice de actividad alfa total y de la concentración isotópica de uranio.

En la campaña de 2021 no se han obtenido valores en ninguna de las muestras por encima del LID.

El Cabril

Se recogen muestras de oveja en dos puntos de muestreo, y de ciervo y perdiz en uno, sobre las cuales se realiza una medida de los isótopos emisores gamma por espectrometría. Adicionalmente, se realiza la determinación de estroncio-90 en hueso, o en toda la muestra, si no se dispone de cantidad suficiente de huesos.

Habitualmente se obtienen valores de actividad de estroncio-90 en todas las muestras, si bien en las campañas de 2017, 2018 y 2019 no se detectó en ninguna. En las campañas de 2020 y 2021, se ha detectado estroncio-90 en las dos muestras de hueso de oveja y en la de 2021, además, en las muestras de hueso de perdiz y ciervo. No se ha detectado actividad de emisores gamma de origen artificial en la campaña de 2021, como es habitual.

Vegetales de consumo humano

Juz.bado

Este tipo de alimentos se recoge en tres puntos de muestreo en el entorno de la instalación de Juzbado. Las muestras seleccionadas en este año han sido: berza, entre los vegetales de hoja ancha; y patata y trigo, entre los vegetales de hoja no ancha. Sobre estas muestras se determinan, anualmente, el índice de actividad alfa total y la concentración isotópica de uranio.

Para los isótopos uranio-234 y uranio-238 habitualmente se obtienen valores de actividad superiores al LID en casi todas las muestras y estos se mantienen similares a lo largo de los años; y para el uranio-235 se detectan valores superiores al LID sólo de forma esporádica.

En esta campaña no se han detectado valores superiores al LID del índice de actividad alfa total ni de uranio-235 (figuras 2.47 y 2.48).

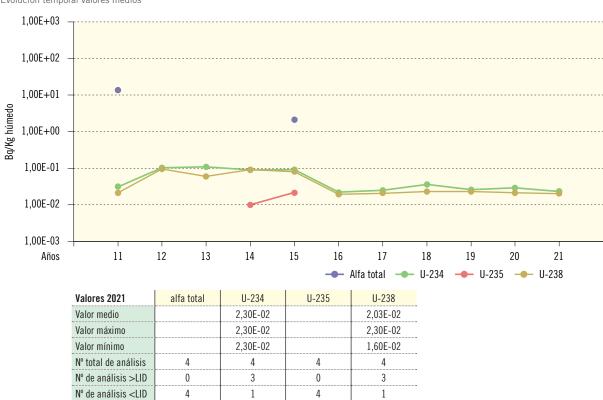
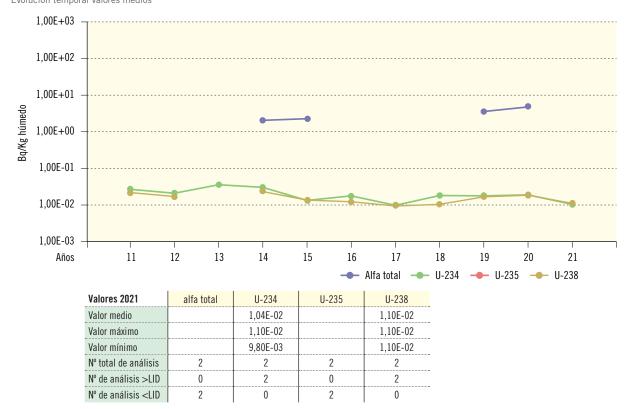



Figura 2.47. Juzbado. Vegetales de hoja no ancha. Valores de concentración de actividad (Bq/kg húmedo) Evolución temporal valores medios

Figura 2.48. Juzbado. Vegetales de hoja ancha. Valores de concentración de actividad (Bq/kg húmedo) Evolución temporal valores medios

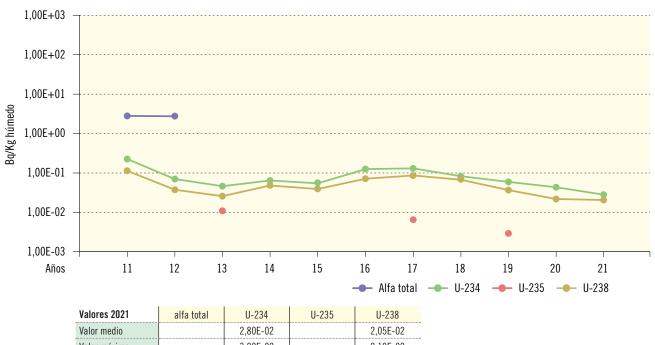
Peces

Juz.bado

Se recogen muestras de peces en dos puntos de muestreo, con frecuencia anual, y se determina el índice de actividad alfa total y las concentraciones de los isótopos de uranio. Los valores se mantienen dentro del rango de los obtenidos en campañas anteriores (figura 2.49).

El Cabril

Se toma una muestra de especies de interés como pesca deportiva, con frecuencia anual, en un punto de muestreo y se analiza el estroncio-90, en esqueleto, y los isótopos emisores gamma por espectrometría en músculo. En 2021 no se ha detectado actividad de estroncio-90 por encima


del LID. En la espectrometría gamma, hasta la fecha, no se ha detectado ningún isótopo de origen artificial.

Leche

Juz.bado

Con periodicidad trimestral se recogen muestras de leche en cuatro puntos: uno correspondiente a leche de vaca y tres de leche de oveja. En todas las muestras se determinan el índice de actividad alfa total y las concentraciones de los isótopos de uranio. Los valores obtenidos en 2021 de uranio-234 y 238 son similares a los encontrados con anterioridad a lo largo de las distintas campañas (figura 2.50).

Figura 2.49. Juzbado. Peces. Valores de concentración de actividad (Bq/kg húmedo) Evolución temporal valores medios

14

0

14

1,39E+01

2,00E+01

8.00E+00

14

8

14

0

14

Figura 2.50. Juzbado. Leche. Valores de concentración de actividad (Bq/m³) Evolución temporal valores medios

Miel

El Cabril

Valor medio

Valor máximo

Valor mínimo

Nº total de análisis

Nº de análisis >LID

Nº de análisis <LID

Se recogen muestras de miel en dos puntos del programa de vigilancia de El Cabril sobre las que se realiza un análisis de espectrometría gamma. Hasta ahora no se ha detectado ningún isótopo de origen artificial con actividad superior al LID.

2.2.6. Organismos indicadores

El Cabril

9,60E+00

1,40E+01

6.20E+00

14

3

11

Se recogen anualmente muestras de plantas terrestres, elegidas de entre las existentes en la zona, en nueve puntos de muestreo y, sobre la muestra compuesta por todas ellas en cada uno de los puntos, se determinan los isótopos estroncio-90, tritio y carbono-14, y se realiza una medida de los emisores gamma por espectrometría. En el año 2021 se obtuvieron valores de actividad de estroncio-90 en las nueve muestras analizadas, y no se han obtenido valores de actividad por encima del LID para tritio, carbono-14 ni otros emisores gamma de origen artificial (figura 2.51).

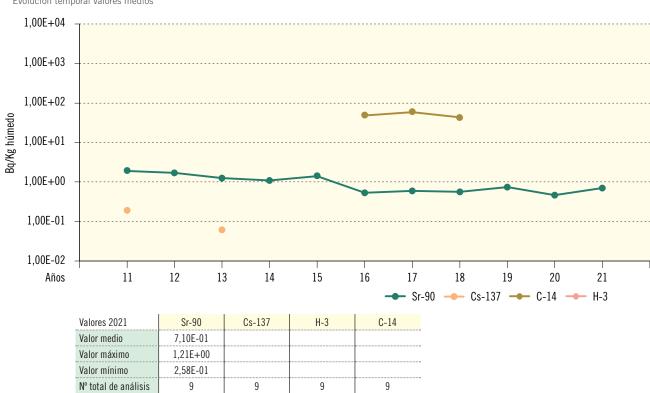


Figura 2.51. El Cabril. Plantas Terrestres. Valores de concentración de actividad (Bq/kg húmedo) Evolución temporal valores medios

Nº de análisis >LID

Nº de análisis <LID

3. Vigilancia alrededor de instalaciones nucleares y radiactivas en situación de parada definitiva, desmantelamiento, clausura o latencia

En la actualidad se encuentran en situación de parada definitiva. desmantelamiento y/o clausura algunas de las instalaciones del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Ciemat), la fábrica de uranio de Andújar (FUA), la central nuclear Vandellós I, la planta Lobo-G, la planta Quercus, la central nuclear José Cabrera y la central nuclear Santa María de Garoña.

Para cada una de estas instalaciones se presenta información sobre las características del PVRA que desarrollan y los resultados obtenidos en la campaña de vigilancia del año 2021, y se detalla para cada tipo de muestra y análisis el número de medidas realizadas y el valor medio de actividad obtenido en dicha campaña.

3.1. Ciemat

3.1.1. Características de la instalación

Por resolución de la Dirección General de la Energía de 3 de febrero de 1993, se autorizó la modificación del catálogo de las instalaciones nucleares y radiactivas del Ciemat, clasificando una serie de instalaciones como radiactivas y nucleares no operativas paradas, en fase de clausura.

Con objeto de adecuar las instalaciones a las necesidades actuales y futuras de sus proyectos de actividades, mejorar la seguridad del centro y sanear sus infraestructuras, se elaboró un plan de modernización denominado Plan Integrado de Mejora de las Instalaciones del Ciemat (PIMIC) en el que se incluye el desmantelamiento de las instalaciones paradas y en fase de clausura.

La autorización para el desmantelamiento de estas instalaciones fue concedida mediante

Orden Ministerial del Ministerio de Industria, Comercio y Turismo de 14 de noviembre de 2005.

3.1.2. Descripción y resultados del PVRA

A lo largo de los años, el PVRA desarrollado se ha ido adaptando a las características operativas del centro. Durante los años de su operación como instalación nuclear, el programa desarrollado fue muy similar al descrito para las centrales nucleares en lo que respecta al tipo de muestras. Durante los últimos años y hasta 2004, la vigilancia del aire y del suelo se redujo a una única estación de muestreo, teniendo en cuenta el cese de actividades y la ausencia de efluentes gaseosos. Sin embargo, durante el año 2005, se modificó su alcance y se desarrolló un programa adaptado a las actividades de desmantelamiento acometidas durante el desarrollo del Plan de Desmantelamiento y Clausura. Esta ampliación del PVRA, en la que desde el año 2005 se incrementaron a más del doble tanto el número de muestras como el de análisis, se mantuvo hasta el año 2019. En el año 2020 el PVRA de la instalación se modificó ligeramente para tener en cuenta el estado actual de las actividades de desmantelamiento y restauración ya realizadas. Por ejemplo, se eliminó la determinación isotópica de uranio, manteniéndose la vigilancia de este elemento a través de la determinación de uranio natural, y se disminuyó la frecuencia de toma y análisis de algunas muestras acumuladoras como sedimentos y organismos indicadores que pasaron de trimestral a anual.

En las figuras 2.52 a 2.57 se describen las características del PVRA y los resultados obtenidos en la campaña del año 2021.

Al igual que ha ocurrido en campañas anteriores, en las muestras de agua superficial (figura 2.56), con las que se lleva a cabo la vigilancia de los ríos Manzanares y Jarama en puntos situados aguas arriba y aguas abajo del vertido del Ciemat (a través de la depuradora de La China), destaca

la detección de yodo-131 en, aproximadamente, un 50% de las muestras. La presencia de este isótopo no se corresponde con las actividades realizadas en el Ciemat; es probable que su origen esté relacionado con su utilización en actividades médicas con fines de tratamiento y diagnóstico, como lo confirma el hecho de ser detectado en

estaciones situadas tanto aguas arriba de los vertidos del Ciemat como agua abajo, coincidiendo también con la detección de tecnecio-99 metaestable, otro de los isótopos de amplio uso en estudios diagnósticos en medicina nuclear y más esporádicamente con la del indio-111, empleado en medicina con fines terapéuticos.

Figura 2.52. Ciemat. Muestras de aire Valores medios – Campaña 2021

Aire bajo flujo

- N.º de estaciones: 3.
- Frecuencia muestreo: partículas de polvo y radioyodos (semanal continuo), H-3 (bimensual continuo) y C-14 (trimestral continuo, en una estación), Rn-222 (semestral continuo, en dos estaciones).
- Tipo de análisis (frecuencia): β total, α total y l-131 (semanal), H-3 (mensual), C-14, Sr-90, espectrometría γ (trimestral), Rn-222 (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
β total	8,27E-04	154	0
lpha total	7,26E-05	152	2
I-131	<lid< td=""><td>0</td><td>154</td></lid<>	0	154
H-3	<lid< td=""><td>0</td><td>36</td></lid<>	0	36
C-14	2,83E-01	4	0
Sr-90	1,88E-06	1	11
Rn-222	1,19E+02	4	0
Espectrometría γ			
Ra-226	2,37E-05	2	10

Aire alto flujo

- N.º de estaciones: 1.
- Frecuencia muestreo: semanal continuo.
- Tipo de análisis (frecuencia): Pu-239+240, U-total (U-238) y Sr-90 (mensual acumulado), Ni-63 y Fe-55 (trimestral acumulado), y espectrometría γ (semanal).

Análiaia	Actividad	N.º total de análisis	
Análisis	Bq/m³	>LID	<lid< td=""></lid<>
Fe-55	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
Ni-63	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
Sr-90	5,64E-07	1	11
U-total (U-238)	3,84E-07	12	0
Pu-239+240	7,51E-09	9	3
Espectrometría γ			
Cs-137	3,86E-07	3	49
Ra-226	1,39E-06	15	37

Figura 2.53. Ciemat. Muestras de radiacion directa y suelo Valores medios – Campaña 2021

Radiacion directa

- N.º de estaciones: 23.
- Frecuencia muestreo: bimestral.
- Tipo de análisis (frecuencia): radiación γ ambiental (bimestral).

Análisis	Actividad	N.º total d	e análisis
	mSv/año	>LID	<lid< td=""></lid<>
Radiación γ ambiental	1,17E+00	135	0

Suelo

- N.º de estaciones: 9.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): Sr-90, espectrometría γ, Pu-239+240, U-total (U-238), Ni-63 y Fe-55 (anual).

Análisis	Actividad	N.º total de análisis	
Alialisis	Bq/kg seco	>LID	<lid< td=""></lid<>
Fe-55	<lid< td=""><td>0</td><td>9</td></lid<>	0	9
Ni-63	<lid< td=""><td>0</td><td>9</td></lid<>	0	9
Sr-90	9,11E-01	4	5
U-total (U-238)	3,45E+01	9	0
Pu-239+240	1,16E-01	9	0
Espectrometría γ			
Cs-137	3,73E+00	9	0
Ra-226	4,70E+01	9	0

Figura 2.54. Ciemat. Muestras de sedimentos de fondo y organismos indicadores

Valores medios - Campaña 2021

Sedimentos de fondo

- N.º de estaciones: 5.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): Sr-90, espectrometría γ y U-total (U-238) (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID	<lid< td=""></lid<>
Sr-90	1,26E+00	3	2
U-total (U-238)	3,63E+01	5	0
Espectrometría γ			
Cs-137	8,78E-01	4	1
Ra-226	3,52E+01	5	0

Organismos indicadores

- N.º de estaciones: 5 (N.º de muestras variable en función de la disponibilidad).
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): Sr-90, espectrometría γ y U-total (U-238) (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	4,42E-01	13	2
U-total (U-238)	1,05E-01	15	0
Espectrometría γ			
Cs-137	8,64E+00	2	13
Ra-226	4,10E-01	10	5

Figura 2.55. Ciemat. Muestras de agua superficial y leche $\mbox{\sc Valores}$ medios — Campaña 2021

Agua superficial

- N.º de estaciones: 6.
- Frecuencia muestreo: mensual.
- Tipo de análisis (frecuencia): β total, β resto y α total (mensual), Sr-90, espectrometría γ, U-total (U-238) y H3 (trimestral acumulado), I-131(trimestral puntual).

Análisis	Actividad	N.º total d	e análisis
	Bq/m³	>LID	<lid< td=""></lid<>
β total	4,07E+02	72	0
β resto	7,84E+01	25	47
lpha total	8,00E+01	72	0
H-3	<lid< td=""><td>0</td><td>24</td></lid<>	0	24
I-131	2,78E+02	13	11
Sr-90	4,84E+00	6	18
U-total (U-238)	5,72E+01	19	5
Espectrometría γ			
Ra-226	1,42E+02	2	22
Tc-99m	2,21E+04	9	15
In-111	9,09E+01	1	23

Leche

- N.º de estaciones: 1.
- Frecuencia muestreo: trimestral.
- Tipo de análisis (frecuencia): I-131, Sr-90 y espectrometría γ (trimestral).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
I-131	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
Sr-90	1,48E+01	1	3
Espectrometría γ			
Ra-226	1,35E+02	1	3

Figura 2.56. Ciemat. Muestras de vegetales

Valores medios - Campaña 2021

Vegetales de hoja ancha

- N.º de estaciones: 3.
- Frecuencia muestreo: anual (estacional), el tipo y número de muestras se ajustan a los cultivos existentes en la zona.
- Tipo de análisis (frecuencia): Sr-90, I-131 y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
I-131	<lid< td=""><td>0</td><td>3</td></lid<>	0	3
Sr-90	2,20E-01	2	1
Espectrometría γ			
Ra-226	1,91E-01	1	2

Vegetales de hoja no ancha

- N.º de estaciones: 3.
- Frecuencia muestreo: anual (estacional), el tipo y número de muestras se ajustan a los cultivos existentes en la zona.
- Tipo de análisis (frecuencia): Sr-90 y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	3,89E-02	1	7
Espectrometría γ			
Ra-226	1,52E-01	1	7

Figura 2.57. Ciemat. Muestras de carnes, aves y huevos Valores medios – Campaña 2021

Carnes y aves

- N.º de estaciones: 2.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
Allalisis	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Espectrometría γ			
Cs-137	7,99E-02	1	1
Ra-226	<lid< td=""><td>0</td><td>2</td></lid<>	0	2

Huevos

- N.º de estaciones: 1.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
Ra-226	<lid< td=""><td>0</td><td>1</td></lid<>	0	1

3.2. Fábrica de Uranio de Andújar (FUA)

3.2.1. Características de la instalación

- Tipo de instalación:
 Fábrica de tratamiento de mineral de uranio para la obtención de concentrados de óxido de uranio (U₂O₉) con pureza del 80 al 85 %.
- Inicio de la operación: Noviembre de 1959.
- Parada de la operación: Julio de 1981.
- Cierre y desmantelamiento:
 Por Orden Ministerial de 1 de febrero de 1991, se otorgó a la Empresa Nacional de Residuos Radiactivos Sociedad Anónima (Enresa) la autorización para la ejecución de las actividades de desmantelamiento y restauración del emplazamiento, actividades que se iniciaron en febrero de 1992 y en cuyo desarrollo se distinguen tres fases:
 - Primer periodo: 1991-1994. Actividades de desmantelamiento y restauración.
 - Segundo periodo: desde 1994 y con una duración mínima de 10 años se está desarrollando el Plan de Vigilancia y Mantenimiento (actualmente en ejecución).
 - Tercer periodo: se iniciará una vez finalizado el anterior y se tratará de un control a largo plazo. Periodo de Vigilancia y Custodia.

3.2.2. Descripción y resultados del PVRA

En el año 1994 finalizaron las obras de acondicionamiento y estabilización de los estériles, así como las de implantación de las capas de protección contra la emisión de radón y contra la infiltración de agua de lluvia.

Una vez finalizadas dichas obras, Enresa propuso un PVRA modificado, en relación con campañas anteriores, que está actualmente vigente y que se mantendrá a lo largo del denominado Plan de Vigilancia y Mantenimiento. En este programa se suprimen, como consecuencia de la ausencia de término fuente gaseoso, las muestras que se consideraban en la vía de exposición aire; no obstante, se mantiene una vigilancia sobre la tasa de exhalación de radón en el dique acondicionado.

Para el establecimiento del Plan de Vigilancia y Mantenimiento se han tenido en cuenta las características del emplazamiento y la normativa internacional aplicable como Guidance for UMTRA Project Surveillance and Maintenance, UMTRA-DOE/AL 3501240000. January 1986, Regulatory Guide 4.14 Radiological Effluent and Environmental Monitoring at Uranium Mills, Rev. 1, April 1980 y Long-Term Surveillance and Monitoring of Decommissioned Uranium Processing Sites and Tiling Piles, Nureg/CR-4504, March 1986. La vigilancia actual se lleva a cabo sobre muestras de agua subterránea procedente de pozos y sondeos, agua superficial, tasa de exhalación de radón en la superficie del dique con frecuencia bienal a partir de 2021, y cultivos regados con agua de pozo. En la figura 2.58 se describen las características del PVRA y los resultados obtenidos en la campaña de 2021. En esta campaña no se pudieron recoger cultivos por falta de suministrador.

Figura 2.58. Fábrica de Uranio de Andújar (FUA). Muestras de agua superficial y de pozo

Valores medios – Campaña 2021

Agua superficial

- N.º de estaciones: 2.
- Frecuencia muestreo: trimestral.
- Tipo de análisis (frecuencia): α total, β total, β resto, Ra-226, Ra-228 (espectrometría γ), Th-230 (espectrometría α de torio), Pb-210, U-total y espectrometría α de uranio (trimestral).

Análisis	Actividad	N.º total d	e análisis
	Bq/m³	>LID	<lid< td=""></lid<>
β total	2,58E+02	8	0
β resto	<lid< td=""><td>0</td><td>8</td></lid<>	0	8
lpha total	<lid< td=""><td>0</td><td>8</td></lid<>	0	8
Pb-210	6,20E+00	4	4
Ra-226	4,78E+00	8	0
Th-230	<lid< td=""><td>0</td><td>8</td></lid<>	0	8
U-total	6,18E+01	8	0
Espectrometría γ			
U-234	2,71E+01	8	0
U-235	1,18E+00	5	3
U-238	1,94E+01	8	0
Espectrometría γ			
Ra-228	<lid< td=""><td>0</td><td>8</td></lid<>	0	8

Agua de pozo

- N.º de estaciones: 10.
- Frecuencia muestreo: trimestral.
- Tipo de análisis (frecuencia): α total, β total, β resto, Ra-226, Ra-228 (espectrometría γ), Th-230 (espectrometría α de torio), Pb-210, U-total y espectrometría α de uranio (trimestral).

Análisis	Actividad	N.º total d	e análisis
	Bq/m³	>LID	<lid< td=""></lid<>
β total	1,17E+03	40	0
β resto	1,21E+03	24	16
lpha total	1,08E+03	34	6
Pb-210	1,04E+01	33	7
Ra-226	2,92E+00	15	25
Th-230	1,26E+00	1	39
U-total	2,05E+03	40	0
Espectrometría γ			
U-234	1,06E+03	40	0
U-235	5,83E+01	33	7
U-238	1,07E+03	40	0
Espectrometría γ			
Ra-228	<lid< td=""><td>0</td><td>40</td></lid<>	0	40

3.3. Vandellós I

3.3.1. Características de la instalación

• Tipo de instalación:

Central de uranio natural-grafito-gas, con potencia eléctrica nominal de 480 MWe. Ha sido la única central en España que ha utilizado uranio natural como combustible, grafito como moderador y CO₂ como fluido refrigerante.

- Inicio de la operación: 11 de febrero de 1972.
- Parada de la operación: Octubre de 1989.
- Cierre y desmantelamiento:

Por Orden Ministerial de 31 de julio de 1990 se estableció su cierre y se determinaron los términos en los que se desarrollaría su clausura, en la que se especificaba el calendario completo de las fases del cierre definitivo y del desmantelamiento final. Por Orden Ministerial de 28 de enero de 1998 se autorizó la transferencia de titularidad de la central nuclear Vandellós I de la empresa Hifrensa a Enresa y se otorgó a esta última autorización para la ejecución de las actividades de desmantelamiento de la central.

• Latencia:

Por Resolución de 17 de enero de 2005 se autorizó la fase de latencia, que implica el

reconocimiento de que la instalación ha reducido las actividades que pueden suponer la emisión de efluentes al medio ambiente.

3.3.2. Descripción y resultados del PVRA

En el Programa de Vigilancia desarrollado por Enresa durante la fase de desmantelamiento y clausura se redujo el área de vigilancia a un radio de 10 km y se intensificaron los controles ambientales sobre zonas más cercanas a aquellas en las que tuvieron lugar las actividades de desmantelamiento.

El número de estaciones de muestreo, así como la frecuencia de muestreo y análisis, se ajustaron a la actividad isotópica prevista en los efluentes como resultado de las tareas de desmantelamiento.

El PVRA de la fase de latencia, a la que corresponde el programa desarrollado durante el año 2021, supone también una reducción respecto del llevado a cabo durante la fase de desmantelamiento. Se ha suprimido la recogida de algunos tipos de muestras como cultivos vegetales y, en otros casos, se ha reducido el número de puntos de muestreo o su frecuencia de recogida o análisis.

En las figuras 2.59 a 2.63 se describen las características del PVRA y los resultados obtenidos en la campaña del año 2021.

Figura 2.59. Central nuclear Vandellós I. Muestras de aire y radiación directa

Valores medios - Campaña 2021

Aire

- N.º de estaciones: 3.
- Frecuencia muestreo: partículas de polvo semanal.
- Tipo de análisis (frecuencia): β total, (semanal), Sr-90 y espectrometría γ (trimestral- compuesta), H-3 (anual en 2 estaciones y semestral en 1 estación) y C-14 (anual).

Análiaia	Actividad	N.º total de análisis	
Análisis	Bq/m³	>LID	<lid< td=""></lid<>
β total	7,38E-04	156	0
C-14	2,14E-02	4	0
H-3	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
Sr-90	<lid< td=""><td>0</td><td>12</td></lid<>	0	12
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>12</td></lid<>	0	12

Radiación directa

- N.º de estaciones: 8.
- Frecuencia muestreo: trimestral.
- Tipo de análisis (frecuencia): radiación γ ambiental (trimestral).

Análisis	Actividad	N.º total d	e análisis
	mSv/año	>LID	<lid< td=""></lid<>
Radiación γ ambiental	5,36E-01	32	0

Figura 2.60. Central nuclear Vandellós I. Muestras de suelo Valores medios – Campaña 2021

Suelo

- N.º de estaciones: 5.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espect. γ y Sr-90 (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID <lid< td=""></lid<>	
Sr-90	1,35E+00	5	0
Espectrometría γ			
Cs-137	3,36E+00	5	0

Figura 2.61. Central nuclear Vandellós I. Muestras de agua de mar y sedimentos de orilla

Valores medios – Campaña 2021

Agua de mar

- N.º de estaciones: 5 en superficie y 5 en profundidad.
- Frecuencia muestreo: quincenal y mensual en superficie y semestral en profundidad.
- Tipo de análisis (frecuencia): β total, β resto, espectrometría γ, H-3, Pu-238 y Am-241 (quincenal y mensual) en superficie y Sr-90, Pu-238, Am-241 y espectrometría γ en profundidad (semestral).

Análisis	Actividad	N.º total d	le análisis
	Bq/m³	>LID	<lid< td=""></lid<>
En superficie			
β total	1,67E+04	88	0
β resto	<lid< td=""><td>0</td><td>88</td></lid<>	0	88
tritio	1,05E+04	1	87
Pu-238	<lid< td=""><td>0</td><td>88</td></lid<>	0	88
Am-241	<lid< td=""><td>0</td><td>88</td></lid<>	0	88
Espectrometría γ			
Cs-137	3,80E+01	3	85
En profundidad			
Sr-90	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Pu-238	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Am-241	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>10</td></lid<>	0	10

Sedimentos de orilla (arena de playa)

- N.º de estaciones: 3.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): Sr-90, Pu-238 y Am-241 y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID	<lid< td=""></lid<>
Sr-90	5,36E-01	3	0
Pu-238	<lid< td=""><td>0</td><td>3</td></lid<>	0	3
Am-241	<lid< td=""><td>0</td><td>3</td></lid<>	0	3
Espectrometría γ			
Cs-137	1,17E-01	1	2

Figura 2.62. Central nuclear Vandellós I. Muestras de sedimentos de fondo y organismos indicadores

Valores medios - Campaña 2021

Sedimentos de fondo

- N.º de estaciones: 5.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): Sr-90, Pu-238, Am-241 y espectrometría γ (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID	<lid< td=""></lid<>
Sr-90	9,37E-01	1	9
Pu-238	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Am-241	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Espectrometría γ			
Cs-137	5,23E-01	5	5

Organismos indicadores

- N.º de estaciones: 5.
- Frecuencia muestreo: semestral.
- Tipo de muestra: Posidonia oceánica.
- Tipo de análisis (frecuencia): Sr-90, Pu-238, Am-241 y espectrometría γ (semestral).

Análisis	Actividad	N.º total de análisis	
Alialisis	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Pu-238	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Am-241	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Espectrometría γ			
Co-58	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Co-60	7,94E-02	3	7
Cs-137	5,29E-02	2	8

Figura 2.63. Central nuclear Vandellós I. Muestras de mariscos y peces

Valores medios – Campaña 2021

Mariscos

- N.º de estaciones: 2.
- Frecuencia muestreo: semestral.
- Tipo de muestra: cigalas y galeras.
- Tipo de análisis (frecuencia): Sr-90, Pu-238, Am-241 y espectrometría γ (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	5,86E-02	5	1
Pu-238	<lid< td=""><td>0</td><td>6</td></lid<>	0	6
Am-241	<lid< td=""><td>0</td><td>6</td></lid<>	0	6
Espectrometría γ			
Cs-137	4,13E-02	2	4

3.4. Planta Lobo G

3.4.1. Características de la instalación

- Tipo de instalación: Tratamiento de minerales de uranio de la zona en la que se encontraba ubicada esta instalación.
- Inicio de la operación: 21 de abril de 1977.
- Parada de la operación:
 En marzo de 1991 Enusa comunicó la parada definitiva.
- Por Orden Ministerial de 15 de noviembre de 1995, se autorizó a Enusa a desarrollar las actividades de desmantelamiento y clausura del dique de estériles que finalizaron en junio de 1997. Mediante Resolución de la Dirección General de la Energía de 30 de enero de 1998, obtuvo aprobación del Programa de Vigilancia y Control para el Periodo de Cumplimiento.

Peces

- N.º de estaciones: 2.
- Frecuencia muestreo: semestral.
- Tipo de muestra: pescadilla y peces sin especificar.
- Tipo de análisis (frecuencia): Sr-90, Pu-238, Am-241 y espectrometría γ (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	2,91E-02	2	4
Pu-238	<lid< td=""><td>0</td><td>6</td></lid<>	0	6
Am-241	<lid< td=""><td>0</td><td>6</td></lid<>	0	6
Espectrometría γ			
Cs-137	6,13E-02	4	2

• Clausura:

En Orden Ministerial de 2 de agosto de 2004 se declaró la clausura del emplazamiento restaurado de la planta, entrando en vigor el Programa de Vigilancia a largo plazo. Por emplazamiento restaurado se entiende el dique de estériles reconfigurado y área perimetral, todo ello vallado y señalizado que en total ocupa 13 Ha.

3.4.2. Descripción y resultados del PVRA

El programa de vigilancia a largo plazo incluye medidas de radiación directa, radón, y muestras de agua superficial.

En la figura 2.64 se describen las características del PVRA y los resultados obtenidos durante la campaña del año 2021, en esta campaña no se pudieron recoger las muestras de agua superficial debido a la falta de agua.

Figura 2.64. Planta lobo-G. Campaña 2021 Radón y radiación directa

Exhalación de radón

- N.º de estaciones: 5.
- Frecuencia muestreo: una vez al año.

Análisis	Actividad	N.º total d	e análisis
	mBq/m².s	>LID	<lid< td=""></lid<>
Flujo Rn-222	2,10E+02	5	0

Radiación directa

- N.º de estaciones: 9.
- Frecuencia muestreo: trimestral continuo.
- Tipo de análisis (frecuencia): radiación γ ambiental (trimestral).

Análisis	Actividad	N.º total de análisis	
	mSv/año	>LID	<lid< td=""></lid<>
rad. γ amb.	2,94E+00	36	0

3.5. Planta Quercus

3.5.1. Características de la instalación

- Tipo de instalación:
 Tratamiento de minerales de uranio de la zona en la que se encontraba ubicada esta instalación.
- Inicio de la operación:
 Autorización de puesta en marcha concedida mediante Orden Ministerial de 25 de abril de 1997.
- Cese de operación:
 Cese definitivo de la explotación concedido mediante Orden Ministerial de 14 de julio de 2003 y actualmente en suspensión temporal del proceso de desmantelamiento.

3.5.2. Descripción y resultados del PVRA

Durante 2021 la vigilancia establecida en el emplazamiento de la planta Quercus ha

continuado sin modificaciones relevantes respecto a la que se venía realizando en el periodo de operación.

En las figuras 2.65 a 2.71 se describen las características del PVRA y los resultados obtenidos durante la campaña del año 2021. En el caso del agua potable, y como ha ocurrido ocasionalmente en alguna de las campañas anteriores, en una muestra de la misma estación se superó ligeramente uno de los tres valores paramétricos establecidos en el Real Decreto 314/2016 por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. En la campaña del año 2018 se realizaron análisis complementarios por laboratorios independientes al laboratorio del PVRA con objeto de contrastar los resultados y se confirmó que los valores obtenidos son menores que los establecidos en el citado Real Decreto y en todo caso característicos del fondo radiológico de la zona.

Figura 2.65. Planta Quercus. Muestras de aire y radiación directa Valores medios – Campaña 2021

Aire

- N.º de estaciones: 6.
- Frecuencia muestreo: partículas de polvo semanal continuo.
- Tipo de análisis (frecuencia): α total, (semanal), U total, Th-230, Ra-226, Pb-210 (trimestral).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
α-total	7,49E-05	294	12
U-total	7,44E-06	20	4
Pb-210	1,63E-03	24	0
Ra-226	6,60E-06	5	19
Th-230	<lid< td=""><td>0</td><td>24</td></lid<>	0	24

Radiación directa

- N.º de estaciones: 22.
- Frecuencia muestreo: trimestral.
- Tipo de análisis (frecuencia): radiación γ ambiental (trimestral).

Análisis	Actividad	N.º total d	e análisis
	mSv/año	>LID	<lid< td=""></lid<>
Radiación γ ambiental	1,16E+00	86	0

Figura 2.66. Planta Quercus. Muestras Radón Valores medios – Campaña 2021

Radón

- Rn-222
- N.º de estaciones: 6.
- Frecuencia: semestral continuo y anual.

Descendientes

- N.º de estaciones: 6.
- Frecuencia: mensual.

Análisis	Actividad	N.º total d	e análisis
		>LID	<lid< td=""></lid<>
Rn-222 (Bq/m³)	4,20E+01	12	0
Descendientes (mWL)	2,93E+00	71	1

Figura 2.67. Planta Quercus. Muestras de agua superficial y potable $\mbox{\sc Valores}$ medios — $\mbox{\sc Campaña}$ 2021

Agua potable

- N.º de estaciones: 6.
- Frecuencia muestreo: mensual.
- Tipo de análisis (frecuencia): α total, U-total, Th-230, Ra-226 y Pb-210 (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
lpha -total	1,40E+02	9	2
U-total	7,32E+01	11	0
Pb-210	1,34E+02	11	0
Ra-226	1,43E+01	11	0
Th-230	9,80E-01	1	10

Agua superficial

- N.º de estaciones: 7.
- Frecuencia muestreo: continuo con recogida semanal o mensual en 6 estaciones; puntual con recogida mensual en 1 estación.
- Tipo de análisis (frecuencia): α total, U-total y Ra-226 (mensual), Pb-210 (en muestras de 5 estaciones por espectrometría γ y muestras de 4 estaciones por separación radioquímica, β total, β resto y Th-230 (trimestral).

Análisis	Actividad	N.º total d	e análisis
Alialisis	Bq/m³	>LID	<lid< td=""></lid<>
lpha -total	2,14E+02	50	30
β -total	2,95E+02	28	0
β -resto	3,43E+02	18	10
U-total	2,46E+02	62	18
Pb-210	5,14E+01	12	0
Ra-226	1,07E+01	37	43
Th-230	<lid< td=""><td>0</td><td>28</td></lid<>	0	28
Espectrometría γ			
Pb-210	<lid< td=""><td>0</td><td>16</td></lid<>	0	16

Figura 2.68. Planta Quercus. Muestras de suelo y sedimentos Valores medios – Campaña 2021

Suelo

- N.º de estaciones: 10.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): α total, espectrometría γ (Pb-210, Ra-226 y Th-230) y U-total (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID	<lid< td=""></lid<>
lpha -total	8,99E+02	10	0
U-total	6,57E+02	10	0
Espectrometría γ			
Pb-210	4,35E+01	9	1
Ra-226	3,80E+01	10	0
Th-230	<lid< td=""><td>0</td><td>10</td></lid<>	0	10

Sedimentos

- N.º de estaciones: 8.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): α total, β total, espectrometría γ (Pb-210, Ra-226 y Th-230) y U-total (anual).

Análisis	Actividad	N.º total de análisis	
Alidii515	Bq/kg seco	>LID	<lid< td=""></lid<>
lpha -total	1,22E+04	5	0
β -total	1,92E+04	5	0
U-total	9,67E+03	5	0
Espectrometría γ			
Pb-210	9,34E+01	2	3
Ra-226	1,60E+02	5	0
Th-230	<lid< td=""><td>0</td><td>5</td></lid<>	0	5

Figura 2.69. Planta Quercus. Muestras de organismos indicadores Valores medios – Campaña 2021

Organismos indicadores

- N.º de estaciones: 2.
- Tipo de muestra: Potamogetum, Scirpus y Cladophora.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): α total, β total, espectrometría γ (Pb-210, Ra-226 y Th-230) y U-total (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
lpha -total	8,90E+02	11	0
β -total	8,57E+02	11	0
U-natural	5,35E+02	11	0
Espectrometría γ			
Pb-210	1,36E+01	9	2
Ra-226	2,53E+01	11	0
Th-230	<lid< td=""><td>0</td><td>11</td></lid<>	0	11

Figura 2.70. Planta Quercus. Muestras de vegetales de consumo humano y animal

Valores medios - Campaña 2021

Vegetales de consumo humano

- N.º de estaciones: 2.
- Tipos de muestra: Trigo y centeno.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): α total, espectrometría γ (Pb-210, Ra-226 y Th-230) y U-total (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
lpha -total	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
U-total	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
Espectrometría γ			
Pb-210	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
Ra-226	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
Th-230	<lid< td=""><td>0</td><td>1</td></lid<>	0	1

Vegetales de consumo animal

- N.º de estaciones: 2.
- Tipo de muestra: Hierba, pasto y bellota.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): α total, espectrometría γ (Pb-210, Ra-226 y Th-230) y U-total (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
lpha -total	3,09E+01	8	2
U-total	7,72E-01	9	1
Espectrometría γ			
Pb-210	2,79E+01	4	6
Ra-226	2,82E+00	8	2
Th-230	<lid< td=""><td>0</td><td>10</td></lid<>	0	10

Figura 2.71. Planta Quercus. Muestras de leche y carne Valores medios – Campaña 2021

Leche

- N.º de estaciones: 1.
- Tipos de muestra: Leche de vaca.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): α total, espectrometría γ (Pb-210, Ra-226 y Th-230) y U-total (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
lpha -total	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
U-total	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
Espectrometría γ			
Pb-210	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
Ra-226	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
Th-230	<lid< td=""><td>0</td><td>1</td></lid<>	0	1

3.6. José Cabrera

3.6.1. Características de la instalación

- Tipo de instalación: Central nuclear de agua a presión, con potencia eléctrica nominal de 160 MWe.
- Inicio de la operación: Junio de 1968.
- Cese de operación:
 31 de abril de 2006 según Orden Ministerial del Ministerio de Industria, Turismo y Comercio 1652/2006.
- Desmantelamiento:

El día 1 de febrero de 2010 el Ministerio de Industria, Energía y Turismo emitió la Orden Ministerial ITC/201/2010, por la que se autorizó la transferencia de titularidad de la central nuclear José Cabrera de la empresa Gas Natural, SA a Enresa, y se otorgó a esta última autorización para la ejecución del desmantelamiento de la instalación.

Carne

- N.º de estaciones: 2.
- Tipo de muestra: cerdo y cordero.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): α total, espectrometría γ (Pb-210, Ra-226 y Th-230) y U-total (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
lpha -total	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
U-total	5,00E-02	1	1
Espectrometría γ			
Pb-210	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
Ra-226	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
Th-230	<lid< td=""><td>0</td><td>2</td></lid<>	0	2

3.6.2. Descripción y resultados del PVRA

Aunque la central nuclear José Cabrera ya no se encuentra en funcionamiento, ha seguido manteniendo el mismo programa de vigilancia que durante la fase de operación, y ha completado su alcance con una serie de análisis que formarán parte del PVRA durante la etapa de desmantelamiento y clausura. Para la inclusión de los nuevos análisis se ha tenido en cuenta la historia operativa de la instalación, la caracterización radiológica y las actividades de desmantelamiento previstas.

En las figuras 2.72 a 2.79 se describen las características del PVRA y los resultados obtenidos en la campaña del año 2021. Los análisis marcados con un asterisco (*) en la descripción del programa para cada una de las muestras son los que se han añadido para determinar el posible impacto del desmantelamiento de la instalación.

Durante la campaña del año 2018 se detectó americio-241 en una muestra de sedimentos de

fondo, este isótopo no había sido detectado en campañas anteriores en este tipo de muestras. Esta detección se mantuvo en 2019, pero en 2020 y 2021 no se han producido detecciones por encima del LID en ninguna muestra. Los valores obtenidos en 2018 y 2019 se compararon con los niveles

de referencia establecidos para otros programas de vigilancia, comprobándose que dichos valores no representan riesgo desde el punto de vista radiológico. En cualquier caso, se continúa realizando un seguimiento de este isótopo.

Figura 2.72. Central Nuclear José Cabrera. Muestras de aire y radiación directa

Valores medios - Campaña 2021

Aire

- N.º de estaciones: 6.
- Frecuencia muestreo: partículas de polvo (semanal continuo en las seis estaciones), *H-3 (mensual continuo) y *C-14 (trimestral continuo) en una estación.
- Tipo de análisis (frecuencia): β total y * α total (semanal), Sr-90, *Fe-55,*Ni-63 y espectrometría γ (trimestral compuesta), *H-3 (mensual) y *C-14 (trimestral).

Análisis	Actividad	N.º total d	e análisis
	Bq/m³	>LID	<lid< td=""></lid<>
β total	7,30E-04	308	4
*α total	1,12E-04	33	279
*Fe-55	<lid< td=""><td>0</td><td>24</td></lid<>	0	24
*Ni-63	<lid< td=""><td>0</td><td>24</td></lid<>	0	24
Sr-90	<lid< td=""><td>0</td><td>24</td></lid<>	0	24
*H-3	<lid< td=""><td>0</td><td>12</td></lid<>	0	12
*C-14	3,22E-02	4	0
Espectrometría γ			
Cs-137	2,89E-05	6	18
*Co-60	<lid< td=""><td>0</td><td>24</td></lid<>	0	24

^{*} Análisis incluidos para determinar el posible impacto del desmantelamiento.

Radiación directa

- N.º de estaciones: 35.
- Frecuencia muestreo: trimestral.
- Tipo de análisis (frecuencia): radiación γ ambiental (trimestral).

Análisis	Actividad	N.º total d	e análisis
	mSv/año	>LID	<lid< td=""></lid<>
Radiación γ ambiental	7,67E-01	139	0

Figura 2.73. Central Nuclear José Cabrera. Muestras de suelo y agua de lluvia

Valores medios - Campaña 2021

Suelo

- N.º de estaciones: 7.
- Frecuencia muestreo: anual y en 3 estaciones semestral.
- Tipo de análisis (frecuencia): espectrometría γ, Sr-90,
 *Fe-55 y *Ni-63 (semestral/anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID	<lid< td=""></lid<>
*Fe-55	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
*Ni-63	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Sr-90	1,25E+00	7	3
Espectrometría γ			
Cs-137	1,04E+01	10	0

Agua de Iluvia (depósito total o depósito seco)

- Frecuencia muestreo: mensual.
- Tipo de análisis (frecuencia): espectrometría γ, Sr-90, *Fe-55 y *Ni-63 (mensual).

Análisis	Actividad	N.º total de análisis	
	Bq/m³ o Bq/m²	>LID	<lid< td=""></lid<>
*Fe-55	<lid< td=""><td>0</td><td>52</td></lid<>	0	52
*Ni-63	<lid< td=""><td>0</td><td>52</td></lid<>	0	52
Sr-90	<lid< td=""><td>0</td><td>52</td></lid<>	0	52
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>52</td></lid<>	0	52

^{*} Análisis incluidos para determinar el posible impacto del desmantelamiento.

Figura 2.74. Central Nuclear José Cabrera. Muestras de agua potable y agua subterránea

Valores medios – Campaña 2021

Agua potable

- N.º de estaciones: 4.
- · Frecuencia muestreo: semanal.
- Tipo de análisis (frecuencia): espectrometría γ (mensual compuesto), Sr-90, β total, β resto, H-3, *Am-241, *Fe-55, *Ni-63 y *Pu-238 (trimestral compuesto).

Análisis	Actividad	N.º total d	e análisis
	Bq/m³	>LID	<lid< td=""></lid<>
β total	8,16E+01	14	2
β resto	4,72E+01	2	14
H-3	1,76E+04	8	8
*Am-241	<lid< td=""><td>0</td><td>16</td></lid<>	0	16
*Fe-55	<lid< td=""><td>0</td><td>16</td></lid<>	0	16
*Ni-63	<lid< td=""><td>0</td><td>16</td></lid<>	0	16
*Pu-238	<lid< td=""><td>0</td><td>16</td></lid<>	0	16
Sr-90	<lid< td=""><td>0</td><td>16</td></lid<>	0	16
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>48</td></lid<>	0	48

Agua subterránea

- N.º de estaciones: 1.
- Frecuencia muestreo: trimestral.
- Tipo de análisis (frecuencia): espectrometría γ , H-3, β total y β resto, *Am-241, *Fe-55, *Ni-63 y *Pu-238 (trimestral).

Análisis	Actividad	N.º total d	e análisis
Allalisis	Bq/m³	>LID	<lid< td=""></lid<>
β total	1,92E+02	4	0
β resto	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
H-3	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
*Am-241	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
*Fe-55	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
*Ni-63	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
*Pu-238	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
Sr-90	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>4</td></lid<>	0	4

^{*} Análisis incluidos para determinar el posible impacto del desmantelamiento.

Figura 2.75. Central Nuclear José Cabrera. Muestras de vegetales $\tt Valores\ medios-Campaña\ 2021$

Vegetales de hoja ancha

- N.º de estaciones: 5.
- Frecuencia muestreo: anual (estacional), el tipo y número de muestras se ajustan a los cultivos existentes en la zona.
- Tipo de análisis (frecuencia): Sr-90, *Am-241, *Fe-55, *Ni-63, *Pu-238 y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
*Am-241	<lid< td=""><td>0</td><td>3</td></lid<>	0	3
*Fe-55	<lid< td=""><td>0</td><td>3</td></lid<>	0	3
*Ni-63	<lid< td=""><td>0</td><td>3</td></lid<>	0	3
*Pu-238	<lid< td=""><td>0</td><td>3</td></lid<>	0	3
Sr-90	9,33E-02	2	1
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>3</td></lid<>	0	3

Vegetales de hoja no ancha

- N.º de estaciones: 5.
- Frecuencia muestreo: anual (estacional), el tipo y número de muestras se ajustan a los cultivos existentes en la zona.
- Tipo de análisis (frecuencia): Sr-90, *Am-241, *Fe-55, *Ni-63, *Pu-238 y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
*Am-241	<lid< td=""><td>0</td><td>20</td></lid<>	0	20
*Fe-55	<lid< td=""><td>0</td><td>20</td></lid<>	0	20
*Ni-63	<lid< td=""><td>0</td><td>20</td></lid<>	0	20
*Pu-238	<lid< td=""><td>0</td><td>20</td></lid<>	0	20
Sr-90	1,02E-01	10	10
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>20</td></lid<>	0	20

^{*} Análisis incluidos para determinar el posible impacto del desmantelamiento.

Figura 2.76. Central Nuclear José Cabrera. Muestras de leche, carne, aves y huevos

Valores medios - Campaña 2021

Leche

- N.º de estaciones: 5.
- Tipos de muestra: Leche de cabra y oveja.
- Frecuencia muestreo: mensual.
- Tipo de análisis (frecuencia): espectrometría γ, Sr-90,
 *Fe-55 y *Ni-63 (mensual).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
*Fe-55	<lid< td=""><td>0</td><td>72</td></lid<>	0	72
*Ni-63	<lid< td=""><td>0</td><td>72</td></lid<>	0	72
Sr-90	4,66E+01	69	3
Espectrometría γ			
Cs-137	3,93E+01	5	67

Carne, aves y huevos

- N.º de estaciones: 6.
- Tipo de muestra: carne de ovino y huevos.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría γ, *Fe-55 y
 *Ni-63 (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
*Fe-55	<lid< td=""><td>0</td><td>12</td></lid<>	0	12
*Ni-63	<lid< td=""><td>0</td><td>12</td></lid<>	0	12
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>12</td></lid<>	0	12

^{*} Análisis incluidos para determinar el posible impacto del desmantelamiento.

Figura 2.77. Central Nuclear José Cabrera. Muestras de agua superficial y sedimentos de orilla

Valores medios - Campaña 2021

Agua superficial

- N.º de estaciones: 3.
- Frecuencia muestreo: mensual y proporcional continuo en 2 estaciones.
- Tipo de análisis (frecuencia): espectrometría γ , β total, β resto y H-3 (mensual), *Am-241, *Fe-55, *Ni-63, *Pu-238 y Sr-90 (trimestral compuesto).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
β total	8,65E+01	36	0
β resto	6,10E+01	5	31
H-3	1,80E+04	12	0
*Am-241	<lid< td=""><td>0</td><td>12</td></lid<>	0	12
*Fe-55	<lid< td=""><td>0</td><td>12</td></lid<>	0	12
*Ni-63	<lid< td=""><td>0</td><td>12</td></lid<>	0	12
*Pu-238	<lid< td=""><td>0</td><td>12</td></lid<>	0	12
Sr-90	<lid< td=""><td>0</td><td>12</td></lid<>	0	12
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>36</td></lid<>	0	36

Sedimentos de orilla

- N.º de estaciones: 1.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría γ, *Am-241, *Fe-55, *Ni-63, *Pu-238 (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID	<lid< td=""></lid<>
*Am-241	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
*Fe-55	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
*Ni-63	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
*Pu-238	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
Espectrometría γ			
Cs-137	8,440E-01	2	0

^{*} Análisis incluidos para determinar el posible impacto del desmantelamiento.

Figura 2.78. Central Nuclear José Cabrera. Muestras de sedimentos de fondo y organismos indicadores

Valores medios - Campaña 2021

Sedimentos de fondo

- N.º de estaciones: 3.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría γ, Sr-90, *Am-241, *Fe-55, *Ni-63, *Pu-238 (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID	<lid< td=""></lid<>
*Am-241	<lid< td=""><td>0</td><td>6</td></lid<>	0	6
*Fe-55	<lid< td=""><td>0</td><td>6</td></lid<>	0	6
*Ni-63	<lid< td=""><td>0</td><td>6</td></lid<>	0	6
*Pu-238	<lid< td=""><td>0</td><td>6</td></lid<>	0	6
Sr-90	1,04E+00	6	0
Espectrometría γ			
Cs-137	1,09E+01	6	0

Organismos indicadores

- N.º de estaciones: 3 (varias especies según disponibilidad).
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría γ, Sr-90, *Am-241, *Fe-55, *Ni-63, *Pu-238 (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
*Am-241	<lid< td=""><td>0</td><td>11</td></lid<>	0	11
*Fe-55	<lid< td=""><td>0</td><td>11</td></lid<>	0	11
*Ni-63	<lid< td=""><td>0</td><td>11</td></lid<>	0	11
*Pu-238	<lid< td=""><td>0</td><td>11</td></lid<>	0	11
Sr-90	3,78E-01	11	0
Espectrometría γ			
Cs-137	1,83E+00	6	5

^{*} Análisis incluidos para determinar el posible impacto del desmantelamiento.

Figura 2.79. Central Nuclar José Cabrera. Muestras de peces y miel Valores medios – Campaña 2021

Peces

- N.º de estaciones: 3 (dos especies en dos estaciones y una en la piscifactoría).
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría γ, Sr-90, *Am-241, *Fe-55, *Ni-63, *Pu-238 (semestral).

Análisis	Actividad	N.º total de análisis	
Alialisis	Bq/kg húmedo	>LID	<lid< td=""></lid<>
*Am-241	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
*Fe-55	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
*Ni-63	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
*Pu-238	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Sr-90	<lid< td=""><td>0</td><td>10</td></lid<>	0	10
Espectrometría γ			
Cs-137	4,23E-01	8	2

^{*} Análisis incluidos para determinar el posible impacto del desmantelamiento.

3.7. Santa María de Garoña

3.7.1. Características de la instalación

- Tipo de instalación: Central nuclear de agua en ebullición (BWR), con potencia eléctrica nominal de 466 MWe y contención Mark I.
- Inicio de la operación: 11 de mayo de 1971.
- Cese de operación:
 Cese Definitivo de la Explotación según orden del Ministerio de Industria, Energía y Turismo IET/1302/2013, de fecha 5 de julio de 2013.

3.7.2. Descripción y resultados del PVRA

Aunque la central nuclear Santa María de Garoña ya no se encuentra en funcionamiento, ha seguido manteniendo el mismo programa de vigilancia que durante la fase de operación, a excepción del muestreo de radioyodos que desde abril de 2013 se eliminó debido a la situación de parada de la planta.

Miel

- N.º de estaciones: 2.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría γ y *Ni-63 (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID <lid< td=""></lid<>	
*Ni-63	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
Espectrometría γ			
Cs-137	1,26E-01	1	1

^{*} Análisis incluidos para determinar el posible impacto del desmantelamiento.

Durante la campaña de 2018 se redujo el alcance del PVRA, eliminándose los análisis de estroncio-89 dado que el tiempo transcurrido desde la parada de la central es muy superior al periodo de semidesintegración de este isótopo (50,5 días). Además, se eliminaron los dosímetros trimestrales que se exponían en paralelo con los dosímetros mensuales ya que se trataban de medidas redundantes.

En las figuras 2.80 a 2.88 se describen las características del PVRA y los resultados obtenidos en la campaña del año 2021.

Los resultados obtenidos durante la campaña de 2021 son similares a los de campañas anteriores, habiéndose detectado isótopos de origen artificial; como estroncio-90, cesio-137 o cobalto-60; en algunas muestras de las principales vías acumuladoras (suelos, sedimentos de fondo y organismos indicadores). En todos los casos, los resultados obtenidos se encuentran dentro de los rangos históricos.

Figura 2.80. Central Nuclear Santa María de Garoña. Muestras de aire y radiación directa

Valores medios – Campaña 2021

Aire

- N.º de estaciones: 6.
- Frecuencia muestreo: partículas de polvo (semanal continuo).
- Tipo de análisis (frecuencia): β total (semanal), Sr-90, y espectrometría γ (trimestral compuesto).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
β total	4,89E-04	311	1
Sr-90	<lid< td=""><td>0</td><td>24</td></lid<>	0	24
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>24</td></lid<>	0	24

Radiación directa

- N.º de estaciones: 19.
- Frecuencia muestreo: mensual.
- Tipo de análisis (frecuencia): radiación γ ambiental (mensual).

Análisis	Actividad	N.º total d	e análisis
	mSv/año	>LID	<lid< td=""></lid<>
Radiación γ ambiental	7,16E-01	228	0

Figura 2.81. Central Nuclear Santa María de Garoña. Muestras de suelo y agua de lluvia

Valores medios - Campaña 2021

Suelo

- N.º de estaciones: 6.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría γ y Sr-90, (anual)

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID	<lid< td=""></lid<>
Sr-90	9,97E-01	4	2
Espectrometría γ			
Cs-137	8,11E+00	6	0

Agua de lluvia (depósito total o depósito seco)

- Nº de estaciones: 6.
- Frecuencia muestreo: mensual continuo.
- Tipo de análisis (frecuencia): espectrometría γ y Sr-90 (mensual).

Análisis	Actividad	N.º total de análisis	
	Bq/m³ o Bq/m²	>LID	<lid< td=""></lid<>
Sr-90	<lid< td=""><td>0</td><td>72</td></lid<>	0	72
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>72</td></lid<>	0	72

Figura 2.82. Central Nuclear Santa María de Garoña. Muestras de agua potable y agua subterránea

Valores medios - Campaña 2021

Agua potable

- N.º de estaciones: 7.
- Frecuencia muestreo: mensual.
- Tipo de análisis (frecuencia): espectrometría γ (mensual), Sr-90, β total, β resto y H-3 (trimestral compuesto).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
β total	6,42E+01	21	7
β resto	3,76E+01	5	23
H-3	<lid< td=""><td>0</td><td>28</td></lid<>	0	28
Sr-90	<lid< td=""><td>0</td><td>28</td></lid<>	0	28
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>84</td></lid<>	0	84

Agua subterránea

- N.º de estaciones: 2.
- Frecuencia muestreo: trimestral.
- Tipo de análisis (frecuencia):
 espectrometría γ, H-3, β total y β resto (trimestral).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
β total	6,39E+01	8	0
β resto	<lid< td=""><td>0</td><td>8</td></lid<>	0	8
H-3	<lid< td=""><td>0</td><td>8</td></lid<>	0	8
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>8</td></lid<>	0	8

Figura 2.83. Central Nuclear Santa María de Garoña. Muestras de vegetales

Valores medios - Campaña 2021

Vegetales de hoja ancha

- N.º de estaciones: 13.
- Frecuencia muestreo: anual (estacional), el tipo y número de muestras se ajustan a los cultivos existentes en la zona.
- Tipo de análisis (frecuencia): Sr-90 y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	7,90E-02	23	1
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>24</td></lid<>	0	24

Vegetales de hoja no ancha

- N.º de estaciones: 13.
- Frecuencia muestreo: anual (estacional), el tipo y número de muestras se ajustan a los cultivos existentes en la zona.
- Tipo de análisis (frecuencia): Sr-90 y espectrometría γ (anual).

	Análisis	Actividad	N.º total de análisis	
		Bq/kg húmedo	>LID	<lid< td=""></lid<>
	Sr-90	1,07E-01	13	13
	Espectrometría γ			
	Cs-137	<lid< td=""><td>0</td><td>26</td></lid<>	0	26

Figura 2.84. Central Nuclear Santa María de Garoña. Muestras de leche y carne, aves y huevos

Valores medios- Campaña 2021

Leche

- N.º de estaciones: 4.
- Tipos de muestra: Leche de vaca y oveja.
- Frecuencia muestreo: mensual.
- Tipo de análisis (frecuencia): espectrometría γ y Sr-90 (mensual).

Análisis	Actividad	N.º total de análisis		
	Bq/m³	>LID	<lid< td=""></lid<>	
Sr-90		2,70E+01	27	21
Espectro	metría γ			
Cs-137		<lid< td=""><td>0</td><td>48</td></lid<>	0	48

Carne, aves y huevos

- N.º de estaciones: 5.
- Tipo de muestra: carne de aves, carne de corral y huevos.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría γ anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>12</td></lid<>	0	12

Figura 2.85. Central Nuclear Santa María de Garoña. Muestras de agua superficial y sedimentos de orilla

Valores medios - Campaña 2021

Agua superficial

- N.º de estaciones: 4.
- Frecuencia muestreo: mensual.
- Tipo de análisis (frecuencia): espectrometría γ y H-3 (mensual), β total, β resto y Sr-90 (trimestral compuesto).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
β total	5,87E+01	16	0
β resto	<lid< td=""><td>0</td><td>16</td></lid<>	0	16
H-3	1,07E+04	4	44
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>48</td></lid<>	0	48

Sedimentos de fondo

- N.º de estaciones: 8.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría y Sr-90 (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	5,83E-01	3	13
Espectrometría γ			
Cs-137	2,30E+01	11	5

Figura 2.86. Central Nuclear Santa María de Garoña. Organismos indicadores

Valores medios - Campaña 2021

Organismos indicadores (musgo acuático)

- N.º de estaciones: 4.
- Tipos de muestra: musgo acuático.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría γ Sr-90 (anual).

Análisis	Actividad	N.º total d	e análisis
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	2,63E-01	1	0
Espectrometría γ			
Cs-137	2,55E-01	1	0
Co-60	<lid< td=""><td>0</td><td>1</td></lid<>	0	1

Organismos indicadores (musgo terrestre)

- N.º de estaciones: 4.
- Tipo de muestra: criptógamas terrestres.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría γ Sr-90 (anual).

Análisis	Actividad	N.º total d	e análisis
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	3,33E-01	4	0
Espectrometría γ			
Cs-137	7,41E-01	4	0
Co-60	<lid< td=""><td>0</td><td>4</td></lid<>	0	4

Organismos indicadores (plantas acuáticas)

- N.º de estaciones: 4.
- Tipos de muestra: fanerógamas acuáticas.
- · Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría γ (semestral) y Sr-90 (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	7,11E-01	4	0
Espectrometría γ			
Cs-137	4,92E-01	4	0
Co-60	<lid< td=""><td>0</td><td>4</td></lid<>	0	4

Figura 2.87. Central Nuclear Santa María de Garoña. Organismos indicadores

Valores medios - Campaña 2021

Organismos indicadores (fauna terrestre)

- N.º de estaciones: 4.
- Tipos de muestra: gasterópodos terrestres (se analizan completos o sólo la concha).
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría γ y Sr-90 (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	1,81E+00	8	0
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>8</td></lid<>	0	8

Organismos indicadores (fauna acuática)

- N.º de estaciones: 3.
- Tipos de muestra: mejillón cebra.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría γ y Sr-90 (anual).

	Análisis	Actividad	N.º total de análisis	
		Bq/kg húmedo	>LID	<lid< td=""></lid<>
	Sr-90	2,40E+00	3	0
	Espectrometría γ			
	Cs-137	<lid< td=""><td>0</td><td>3</td></lid<>	0	3

Figura 2.88. Central Nuclear Santa María de Garoña. Muestras de peces y azúcar

Valores medios - Campaña 2021

Peces

- N.º de estaciones: 3.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría γ (semestral).

Análisis	Actividad	N.º total d	e análisis
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>4</td></lid<>	0	4

4. Otros Programas de Vigilancia

4.1. Minería de uranio

En el noroeste de la provincia de Salamanca se encuentran dos antiguas minas de uranio, Valdemascaño y Casillas de Flores, que actualmente se encuentran restauradas y en periodo de vigilancia y mantenimiento. La primera, con una extensión de 116 hectáreas se encuentra ubicada entre los municipios de Hinojosa de Duero y Sobradillo, y la segunda, con 5.436 hectáreas, entre los municipios de Alberguería de Argañán, Casillas de Flores, Fuenteaguinaldo, La Alamedilla y Puebla de Azaba.

En ambas minas, la Junta de Energía Nuclear (JEN) realizó labores de prospección entre los años 50 y 60, horadando sondeos, galerías y pozos, así como construyendo unas eras de lixiviación para evaluar las reservas disponibles, pero no llegando a explotar dichas reservas en ningún momento.

En los años 70 y 80, estas reservas fueron transferidas a ENUSA Industrias Avanzadas para la explotación, en su caso, de los minerales radiactivos contenidos en las mismas. No obstante, tras completar una serie de exploraciones y prospecciones, se estimó que no quedaban suficientemente contrastadas las reservas

Azúcar

- N.º de estaciones: 1.
- Frecuencia muestreo: 3 al año (enero, febrero y marzo).
- Tipo de análisis (frecuencia): espectrometría γ y Sr-90 (en cada muestra).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Sr-90	<lid< td=""><td>0</td><td>3</td></lid<>	0	3
Espectrometría γ			
Cs-137	<lid< td=""><td>0</td><td>3</td></lid<>	0	3

predefinidas, y se dieron por finalizadas las labores, solicitando, años después, la renuncia voluntaria y el abandono definitivo de labores para ambas minas.

Este abandono fue autorizado en ambos casos en 2006 por la Junta de Castilla y León, requiriendo como parte del condicionado a la autorización, la ejecución de un plan de restauración, por el que se llevó a cabo la demolición de los restos de estructuras y edificaciones existentes, la retirada de escombreras, y la agrupación de todos estos materiales en un denominado "depósito de confinamiento", que fue cubierto con tres capas de cobertura (arcilla, bolos y tierra vegetal) para evitar la dispersión e impacto de los residuos mineros. Adicionalmente, en esta autorización se solicitó que tras la restauración se llevara a cabo un plan de vigilancia y mantenimiento, que dio comienzo en 2007 y perdura hasta nuestros días.

4.1.1. Casillas de Flores

4.1.1.1. Características de la instalación

• Tipo de instalación:

Antiguas instalaciones minero-metalúrgicas en las que se realizaron labores de investigación por la JEN entre 1953-1957, y labores de

- exploración por ENUSA entre 1980-1983, renunciando finalmente a su explotación.
- Declaración como reserva definitiva a favor del estado para investigación de minerales por la JEN:
 - Orden Ministerial 19 de diciembre de 1960.
- Transferencia de la titularidad de los derechos mineros de explotación de la reserva a ENUSA:
 - Orden Ministerial de 27 de noviembre de 1973 (BOE 11/12/1973).
- Autorización de ejecución del abandono de labores:

Resolución de la Sección de Minas de la Delegación Territorial de Salamanca del Servicio Territorial de Industria, Comercio y Turismo de la Junta de Castilla y León de 24 de febrero de 2006.

4.1.1.2 Descripción y resultados del PVRA

El plan de vigilancia y mantenimiento está en ejecución desde 2007, tras la restauración del emplazamiento, habiendo sufrido diversas modificaciones en su alcance a lo largo de los años, en función de la evaluación de los resultados obtenidos.

El programa actual de vigilancia de este emplazamiento incluye el muestreo de aguas superficiales lénticas del entorno de la antigua mina, y de exhalación de radón y radiación gamma ambiental mediante radiometría autoportada dentro de los límites del emplazamiento para vigilar la integridad de la restauración.

En 2017 ENUSA solicitó al CSN su aprobación para poner fin al programa de vigilancia e interrumpió su ejecución temporalmente a la espera de contestación. Esta solicitud fue evaluada en 2019 por el CSN, concluyendo que se debía continuar con el programa de vigilancia, con un alcance adaptado a la situación radiológica actual. Por este motivo, en 2018 no hubo campaña y en 2019 únicamente se recogieron 6 muestras de agua superficial al final de la campaña. En los años 2020

y 2021 se ha desarrollado la campaña completa, cuyos resultados se incluyen en las figuras 2.89 y 2.90.

Como novedad, en la campaña de 2021 se ha realizado un estudio de la correlación entre la concentración de actividad del radio-226 en suelo y la medida de la radiación gamma ambiental, obteniendo un ajuste que permite vigilar el radio-226 en el suelo, sin necesidad de tomar muestra, lo que degradaría la cobertura colocada. Se utilizará este ajuste a partir de la campaña 2022.

Figura 2.89. Mina Casillas de Flores. Muestras de agua superficial Valores medios – Campaña 2021

Agua superficial

- N.º de estaciones: 11.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): α total, U-total y Ra-226, Pb-210 y Th-230.

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
lpha -total	1,93E+02	19	0
U-total	9,90E+01	19	0
Pb-210	1,52E+02	18	1
Ra-226	8,97E+01	19	0
Th-230	4,46E+00	10	9

Figura 2.90. Mina Casillas de Flores. Muestras de exhalación de radón

Valores medios - Campaña 2021

Exhalación de radón

- N.º de estaciones: 18 repartidos sobre las zonas restauradas.
- Frecuencia muestreo: anual.
- Tipo de análisis: Rn-222.

	Análisis	Actividad	N.º total d	e análisis
		mBq/m²·s	>LID	<lid< td=""></lid<>
	Flujo Rn-222	1,23E+03	18	0

4.1.2. Valdemascaño

4.1.2.1. Características de la instalación

- Tipo de instalación: Antiguas instalaciones minero-metalúrgicas en
 - las que se realizaron labores de investigación por la JEN en los años 60, y labores de exploración por ENUSA entre 1981 y 1983, renunciando finalmente a su explotación.
- Declaración como reserva definitiva a favor del estado para investigación de minerales por la JEN:
 - Orden Ministerial 12 de mayo de 1970.
- Transferencia de la titularidad de los derechos mineros de explotación de la reserva a ENUSA:
 - Orden Ministerial de 27 de noviembre de 1973 (BOE 11/12/1973).
- Autorización de ejecución del abandono de labores:
 - Resolución de la Sección de Minas de la Delegación Territorial de Salamanca del Servicio Territorial de Industria, Comercio y Turismo de la Junta de Castilla y León de 27 de febrero de 2006.

4.1.2.2 Descripción y resultados del PVRA

El programa actual de vigilancia de este emplazamiento está en ejecución desde 2007 e incluye el muestreo de aguas superficiales lénticas y lóticas en el entorno de la antigua mina, de pastos, exhalación de radón y de radiación gamma ambiental mediante radiometría autoportada dentro de los límites del emplazamiento para vigilar la integridad de la restauración. En las figuras 2.91 a 2.93 se describen las características del PVRA y los resultados obtenidos en la campaña del año 2021.

Figura 2.91. Mina Valdemascaño. Muestras de agua superficial Valores medios – Campaña 2021

Agua superficial

- N.º de estaciones: 7.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): α total, U-total y Ra-226, Pb-210 y Th-230.

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
lpha -total	1,23E+02	4	4
U-total	4,31E+01	8	0
Pb-210	3,15E+01	6	2
Ra-226	4,23E+01	6	2
Th-230	1,54E+00	2	6

Figura 2.92. Mina Valdemascaño. Muestras de pastos Valores medios — Campaña 2021

Pastos

- N.º de estaciones: 3.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): α total, U-total y Ra-226, Pb-210 y Th-230.

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
lpha -total	2,22E+01	3	0
U-total	4,77E-01	3	0
Pb-210	1,83E+01	3	0
Ra-226	3,34E+00	3	0
Th-230	<lid< td=""><td>0</td><td>3</td></lid<>	0	3

Figura 2.93. Mina Valdemascaño. Muestras de exhalación de radón Valores medios – Campaña 2021

Exhalación de radón

- N.º de estaciones: 25 repartidos sobre las zonas restauradas.
- Frecuencia muestreo: anual.
- Tipo de análisis: Rn-222.

Análisis	Actividad	N.º total de análisis	
	mBq/m²·s	>LID	<lid< td=""></lid<>
Flujo Rn-222	2,54E+02	25	0

4.2. Vigilancias especiales

4.2.1. Palomares

4.2.1.1. Características

El 17 de enero de 1966 dos aviones de la fuerza aérea de los Estados Unidos colisionaron en pleno vuelo sobre la pedanía de Palomares, Cueva de Almanzora (Almería). Fruto de este accidente cayeron las cuatro bombas que transportaba uno de los aviones siniestrado. Dos de estas bombas, al chocar contra el suelo, liberaron una cantidad de plutonio que se dispersó sobre un área aproximada de 226 ha, incluyendo zonas de vegetación silvestre, cultivadas y urbanas.

Desde junio de 1966 se iniciaron los estudios para delimitar las zonas afectadas por la contaminación radiológica y desde entonces se ha desarrollado un Programa de Vigilancia Radiológica Ambiental (PVRA), que continúa hasta la actualidad. En 1986 el Ciemat adquirió la responsabilidad de la ejecución técnica del PVRA, con la obligación de informar periódicamente al CSN de los resultados obtenidos.

4.2.1.2. Descripción y resultados del PVRA

El PVRA se ha ido modificando paulatinamente a lo largo de los años hasta el desarrollado

actualmente, el cual incluye la recogida de muestras de aire, agua, depósito seco, organismos indicadores, alimentos, sedimentos y suelos. El programa incluye la medida de americio-241 por espectrometría gamma y plutonio-239+240 por espectrometría alfa, sin embargo, durante las campañas de 2018 y 2019 no pudieron realizarse los análisis de plutonio por indisponibilidad de estos equipos a causa de unas obras de acondicionamiento del laboratorio. Los análisis de espectrometría alfa se retomaron en la campaña de 2020, con esta técnica se alcanzan niveles de detección inferiores que han permitido detectar actividad de plutonio en muchas de las muestras en las que con la técnica de espectrometría gamma no se detectaba americio-241. En la campaña de 2021 se ha detectado actividad de plutonio-239+240 por encima del LID en la mayoría de las muestras de aire, agua de lluvia y organismos indicadores, además se ha detectado en una muestra de cultivos de las 24 muestras medidas. En ningún caso se ha producido la superación de los niveles de referencia utilizados que han sido estimados por organismos internacionales para una dosis de 0.1 mSv/año.

En las figuras 2.94 a 2.99 se describen las características del PVRA y los resultados obtenidos en la campaña del año 2021.

Figura 2.94. Palomares. Muestras de aire flujo medio y agua de lluvia

Valores medios - Campaña 2021

Aire flujo medio

- N.º de estaciones: 2.
- Frecuencia muestreo: semanal continuo.
- Tipo de análisis (frecuencia): espectrometría α (semanal, *mensual) y espectrometría γ (semanal).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
Espectrometría γ			
Am-241	2,21E-05	6	98
Espectrometría $lpha$			
Pu-239	1,28E-05	36	0

Agua de Iluvia (depósito total o depósito seco)

- N.º de estaciones: 2.
- Frecuencia muestreo: mensual.
- Tipo de análisis (frecuencia): espectrometría α (mensual) y espectrometría γ (mensual).

Análisis	Actividad	N.º total de análisis	
	Bq/m²	>LID	<lid< td=""></lid<>
Espectrometría γ			
Am-241	<lid< td=""><td>0</td><td>24</td></lid<>	0	24
Espectrometría $lpha$			
Pu-239	7,77E-01	21	3

^{*} Frecuencia mensual acumulada salvo en aquellos filtros en los que se detecta actividad de americio-241 en el análisis de espectrometría γ que se miden individualmente.

Figura 2.95. Palomares. Muestras de agua de riego y agua de mar Valores medios — Campaña 2021

Agua de riego

- N.º de estaciones: 2.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría α (semestral) y espectrometría γ (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
Espectrometría γ			
Am-241	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
Espectrometría $lpha$			
Pu-239	<lid< td=""><td>0</td><td>4</td></lid<>	0	4

Agua de mar

- N.º de estaciones: 1.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría α (anual) y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
Espectrometría γ			
Am-241	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
Espectrometría $lpha$			
Pu-239	<lid< td=""><td>0</td><td>1</td></lid<>	0	1

Figura 2.96. Palomares. Muestras de agua superficial y agua potable

. Valores medios – Campaña 2021

Agua superficial

- N.º de estaciones: 2.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría α (anual) y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
Espectrometría γ			
Am-241	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
Espectrometría $lpha$			
Pu-239	<lid< td=""><td>0</td><td>2</td></lid<>	0	2

Agua potable

- N.º de estaciones: 1.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría α (anual) y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
Espectrometría γ			
Am-241	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
Espectrometría $lpha$			
Pu-239	<lid< td=""><td>0</td><td>1</td></lid<>	0	1

Figura 2.97. Palomares. Muestras de sedimento de orilla y de fondo Valores medios - Campaña 2021

Sedimento de orilla

- N.º de estaciones: 1.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría α (anual) y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID	<lid< td=""></lid<>
Espectrometría γ			
Am-241	<lid< td=""><td>0</td><td>1</td></lid<>	0	1
Espectrometría $lpha$			
Pu-239	<lid< td=""><td>0</td><td>1</td></lid<>	0	1

Sedimento de fondo

- N.º de estaciones: 2.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría α (anual) y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis		
P	Alialisis	Bq/kg seco	>LID	<lid< td=""></lid<>
Espec	trometría γ			
Am-24	11	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
Espec	trometría α			
Pu-23	9	8,10E+00	1	1

Figura 2.98. Palomares. Muestras de suelo y organismos indicadores terrestres

Valores medios – Campaña 2021

Suelos

- N.º de estaciones: 5.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría γ (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg seco	>LID	<lid< td=""></lid<>
Espectrometría γ			
Am-241	9,61E+01	8	2

Organismos indicadores (plantas terrestres)

- N.º de estaciones: 4.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría α (anual) y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Espectrometría γ			
Am-241	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
Espectrometría $lpha$			
Pu-239	2,01E-01	3	1

Organismos indicadores (gasterópodos terrestres)

- N.º de estaciones: 4.
- Frecuencia muestreo: anual.
- Tipo de análisis (frecuencia): espectrometría α (anual) y espectrometría γ (anual).

Análisis	Actividad	N.º total de análisis		
	Bq/kg húmedo	>LID	<lid< td=""></lid<>	
	Espectrometría γ			
	Am-241	<lid< td=""><td>0</td><td>4</td></lid<>	0	4
	Espectrometría $lpha$			
	Pu-239	2,73E+00	3	1

Figura 2.99. Palomares. Muestras de peces y cultivos de consumo humano

Valores medios - Campaña 2021

Peces

- N.º de estaciones: 1.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría α (semestral) y espectrometría γ (semestral).

	Análisis	Actividad	N.º total de análisis	
		Bq/kg húmedo	>LID	<lid< td=""></lid<>
	Espectrometría γ			
	Am-241	<lid< td=""><td>0</td><td>2</td></lid<>	0	2
	Espectrometría $lpha$			
	Pu-239	<lid< td=""><td>0</td><td>2</td></lid<>	0	2

Cultivos de consumo humano

- N.º de estaciones: 15.
- Frecuencia muestreo: *semestral y anual.
- Tipo de análisis (frecuencia): espectrometría α (semestral y anual) y espectrometría γ (semestral y anual).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Espectrometría γ			
Am-241	<lid< td=""><td>0</td><td>25</td></lid<>	0	25
Espectrometría $lpha$			
Pu-239	6,07E-03	1	24

^{*} Dependiendo del tipo de cultivo.

4.2.2. Centro de Recuperación de Inertes (CRI-9)

4.2.2.1. Características

A raíz de la fusión inadvertida de una fuente de cesio-137, que tuvo lugar en el año 1998 en la acería Acerinox de los Barrios (Cádiz), resultó contaminada la zona denominada CRI-9 del Centro de Recuperación de Inertes (CRI) de Palos de la Frontera, instalación a la que se remitían las escorias y polvos de acería para su inertizado.

La Empresa de Gestión Medioambiental SA, (actualmente Agencia de Medioambiente y Agua de la Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible de la Junta de Andalucía) remitió al CSN un estudio de actuaciones a realizar por cada una de las partes firmantes para garantizar la vigilancia radiológica para la normalización de las actividades del centro. En 2001, tras el informe favorable del CSN, la Dirección General de Política y Minas autorizó la permanencia del mencionado material residual en la zona, estabilizando la misma con una capa de arcilla sobre los frentes de vertido contaminado y estableciendo un plan de vigilancia radiológica ambiental (PVRA), que se viene realizando anualmente.

4.2.2.2. Descripción y resultados del PVRA

El PVRA ha sufrido diversas modificaciones a lo largo de los años. Actualmente, incluye medidas de muestras de aguas superficiales, sedimentos de fondo y plantas de orilla marítima; todas ellas recogidas y analizadas con frecuencia semestral.

En las figuras 2.100 y 2.101 se describen las características del PVRA y los resultados obtenidos durante la campaña del año 2021. Al igual que en campañas anteriores se observa la presencia de cesio-137 en las estaciones más próximas a los frentes donde se encuentra retenido el material contaminado, si bien el nivel detectado no presenta riesgos para la población o el medio ambiente.

Figura 2.100. CRI-9. Muestras de agua superficial Valores medios – Campaña 2021

Agua superficial

- N.º de estaciones: 6.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): β total, β resto y espectrometría γ (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/m³	>LID	<lid< td=""></lid<>
β total	1,32E+04	12	0
β resto	5,99E+02	2	10
Espectrometría γ			
Cs-137	9,89E+01	1	11

Figura 2.101. CRI-9. Muestras de sedimentos de fondo y organismos indicadores

Valores medios - Campaña 2021

Sedimentos de fondo

- N.º de estaciones: 5.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría γ (semestral).

	Análisis	Actividad	N.º total de análisis	
		Bq/kg seco	>LID <lid< td=""></lid<>	
	Espectrometría γ			
	Cs-137	8,97E+01	10	0

Organismos indicadores

- N.º de estaciones: 4.
- Frecuencia muestreo: semestral.
- Tipo de análisis (frecuencia): espectrometría γ (semestral).

Análisis	Actividad	N.º total de análisis	
	Bq/kg húmedo	>LID	<lid< td=""></lid<>
Espectrometría γ			
Cs-137	9,23E-01	5	3

5. Vigilancia Radiológica Independiente del CSN en el entorno de las instalaciones

A la vigilancia radiológica ambiental que realizan los titulares de las instalaciones en la zona de influencia de estas, el CSN superpone sus propios programas de control (muestreo y análisis radiológicos), que se denominan Programas de Vigilancia Radiológica Ambiental Independientes (PVRAIN). Se llevan a cabo bien directamente, mediante acuerdos de colaboración específicos con laboratorios de medida de la radiactividad ambiental integrados en la Red de Estaciones de Muestreo (REM), ubicados en las mismas comunidades autónomas que las correspondientes instalaciones, o a través de los programas encomendados a las comunidades autónomas de Cataluña y Valencia. Los puntos de muestreo, el tipo de muestras y los análisis realizados coinciden con los efectuados por los titulares y su alcance representa en torno al 5 % del PVRA desarrollado en cada instalación.

No siempre se trata de un muestreo compartido, requisito que sí tienen que cumplir las muestras que se recogen para el programa de control de calidad asociado a cada uno de los PVRA. Entre las condiciones técnicas establecidas en los acuerdos se encuentra el requerimiento de procurar que las fechas de muestreo del PVRAIN y las del PVRA se aproximen, coincidiendo en muchos casos la fecha de recogida de las muestras en ambos programas, se recojan en las mismas estaciones y se realicen las mismas determinaciones analíticas que en el programa desarrollado por el titular de la instalación.

5.1. Programas de Vigilancia Radiológica Independientes realizados directamente por el CSN

En el año 2021 los programas de vigilancia independiente fueron realizados por los laboratorios que se indican a continuación:

 Laboratorio de Medidas Ambientales de la Universidad de Castilla-La Mancha en Ciudad Real (PVRAIN de las centrales nucleares José Cabrera y Trillo).

- Laboratorio de Radiactividad Ambiental de la Universidad de León (PVRAIN de la central nuclear Santa María de Garoña).
- Laboratorio de Radiactividad Ambiental de la Universidad de Extremadura-Cáceres (PVRAIN de la central nuclear de Almaraz).
- Laboratorio de Radiactividad Ambiental de la Universidad de Salamanca (PVRAIN de las instalaciones de Juzbado y Quercus).
- Laboratorio de Radioquímica y Radiología Ambiental de la Universidad de Granada, Laboratorio de Radiactividad Ambiental de la Universidad de Málaga y Departamento de Física Atómica, Molecular y Nuclear de la Universidad de Sevilla (PVRAIN de las instalaciones El Cabril y FUA).

Se llevaron a cabo los programas aprobados para el año 2021 y se recogieron muestras de agua potable, agua superficial, agua subterránea, suelo, sedimentos de orilla y de fondo, organismos indicadores, leche, carne, vegetales de consumo humano, peces y miel, de acuerdo con las características de cada PVRA.

5.2. Programa de vigilancia encomendado a la Generalidad de Cataluña

En estos programas se consideran tanto las muestras que precisan equipos fijos para su recogida como las que no los necesitan.

La vigilancia radiológica ambiental independiente en la zona de influencia de las centrales nucleares Ascó I y II, Vandellós I y II, está encomendada por el CSN a la Generalidad de Cataluña.

En 2021 se recogieron muestras de aire, agua de lluvia, suelo, agua subterránea, agua potable, agua de mar y de río, sedimentos, arena de playa, organismos indicadores, leche de cabra

y oveja, carne, vegetales de consumo humano, miel, peces y mariscos, así como dosímetros de termoluminiscencia.

Los análisis de las muestras fueron realizados por los siguientes laboratorios:

- Laboratorio de Radiología Ambiental de la Universidad de Barcelona.
- Laboratorio de Análisis de Radiactividad de la Universidad Politécnica de Cataluña.

5.3. Programa de vigilancia encomendado a la Generalidad Valenciana

La vigilancia radiológica ambiental de la zona de influencia de la central nuclear de Cofrentes está encomendada por el CSN a la Generalidad Valenciana.

Durante el año se recogieron muestras de aire, agua potable, agua de lluvia, suelo, agua superficial, agua subterránea, sedimentos, leche de cabra, vegetales de consumo humano, carne, peces, organismos indicadores y miel, así como dosímetros de termoluminiscencia.

Los análisis de las muestras fueron realizados por los siguientes laboratorios:

- Laboratorio de Radiactividad Ambiental de la Universidad de Valencia.
- Laboratorio de Radiactividad Ambiental de la Universidad Politécnica de Valencia.

5.4. Resultados

Los resultados de estos programas son remitidos al CSN anualmente, en cumplimiento de las condiciones establecidas en los acuerdos.

Los resultados correspondientes a la campaña de 2021 son, en general, equivalentes a los obtenidos en los diferentes programas de vigilancia radiológica ambiental de las distintas instalaciones, confirmando las condiciones radiológicas ambientales de los entornos de los distintos emplazamientos.

Para llevar a cabo un seguimiento continuo de la exposición de la población a las radiaciones ionizantes, el CSN tiene establecida una Red de Vigilancia Radiológica Ambiental nacional (Revira) que permite conocer la calidad radiológica del medio ambiente de todo el territorio, es decir:

- Conocer la concentración, distribución y evolución de los radioisótopos presentes en el medio ambiente y de los niveles de radiación ambiental.
- Disponer de un banco de datos medioambientales que permita establecer un rango de niveles característico del fondo radiactivo en cada región y obtener en cualquier momento niveles de referencia.
- Disponer de datos empíricos a través de los cuales estimar el impacto radiológico potencial al que pueda estar sometida la población.

La red Revira está constituida por dos tipos de redes:

- La Red de Estaciones de Muestreo (REM) que incluye:
 - El programa de vigilancia de la atmósfera y del medio terrestre.
 - El programa de vigilancia del medio acuático (aguas continentales y costeras).
- La Red de Estaciones Automáticas (REA).

En los apartados siguientes se define el alcance de los distintos programas y se presentan, de modo resumido, los resultados obtenidos en la campaña de 2021.

1. Red de Estaciones de Muestreo (REM)

Para la ejecución de estos programas, el CSN ha establecido acuerdos de colaboración con diferentes universidades e instituciones. La vigilancia llevada a cabo tiene en cuenta los acuerdos alcanzados por los países miembros de la Unión Europea y la recomendación de la Comisión

de 8 de junio de 2000 sobre el alcance mínimo de los programas de vigilancia para cumplir con el artículo 36 del Tratado Euratom. En dicha recomendación se considera el desarrollo de dos redes de vigilancia:

- Una red densa, con numerosos puntos de muestreo, de modo que quede adecuadamente vigilado todo el territorio de los Estados miembros. Esta red se corresponde con la implantada en España desde 1993, y en el caso de las aguas continentales, con anterioridad, y se dispone de datos desde 1984. En el año 2000 fue modificada: se eliminó la muestra de agua de lluvia y se incluyeron las de leche y agua potable; y en el año 2008 se amplió con la recogida y análisis de muestras de dieta tipo.
- Una red espaciada, constituida por muy pocos puntos de muestreo, donde se requieren unas técnicas de medida de gran sensibilidad, de modo que se detecten los valores existentes para confirmar los resultados de la vigilancia de la red densa que en muchas ocasiones son inferiores a los niveles de detección, y para poder seguir la evolución de las concentraciones de actividad a lo largo del tiempo. Esta red se implantó en nuestro país en el año 2000 estando inicialmente integrada por cinco puntos de muestreo, cuatro en la península y uno en las Islas Canarias, en los que se recogen muestras de aire, agua potable, leche y dieta tipo. En el año 2004 se amplió con dos puntos de muestreo para muestras de agua superficial y otros dos para muestras de aguas costeras. Y en el año 2008 se completó incluyendo análisis de carbono-14 en las muestras de dieta tipo e incorporándose también un nuevo punto de muestreo para muestras de aire y medio terrestre, constituyendo con todo ello la que se ha llamado en España "Red de alta sensibilidad".

1.1. Vigilancia de la atmósfera y del medio terrestre

Se inició en el año 1992 con la participación de 14 laboratorios pertenecientes a nueve comunidades

autónomas. En diciembre de 1996 se firmaron nuevos acuerdos con otros cuatro laboratorios que comenzaron a suministrar datos a partir del año 1998. En el año 2000 se incluyeron otros dos nuevos laboratorios para completar la red de alta sensibilidad, que de nuevo fue ampliada desde el segundo semestre de 2008 con la incorporación de la estación de Cáceres, que ya formaba parte de la red densa.

En la tabla 3.1 se incluye una relación de los laboratorios que colaboran con el CSN, el código

de identificación utilizado en las figuras de este documento y la fecha de suscripción de los correspondientes acuerdos específicos.

1.1.1. Estaciones de muestreo

En la figura 3.1 se sitúan las estaciones de muestreo correspondientes a aire, suelo, agua potable, dieta tipo y leche de la red densa que, como puede observarse, dan una cobertura relativamente uniforme a todo el territorio

Tabla 3.1. Relación de laboratorios colaboradores en la REM

Comunidad autónoma	Laboratorio	Código	Fecha acuerdo
Andalucía	U. GRANADA. Laboratorio de Radioquímica y Radiología Ambiental. Departamento de Química Inorgánica. Facultad de Ciencias	UGR	JULIO 1992
	U. MALAGA Laboratorio de Radiactividad Ambiental. Departamento de Física Aplicada II. Facultad de Ciencias	UML	JUNIO 1991
	U. SEVILLA. Laboratorio de Radiactividad Ambiental. Departamento de Física Aplicada II. Escuela Técnica Superior de Arquitectura.	USE	JULIO 1991
Aragón	U. ZARAGOZA. Laboratorio de Bajas Actividades (LABAC). Departamento de Física Teórica. Facultad de Ciencias.	UZA	DICIEMBRE 1996
Asturias	U. ASTURIAS (Oviedo). Laboratorio de Radiactividad Ambiental. Departamento de Energía. E. Ingenieros de Mina, Energía y Materiales.		DICIEMBRE 1996
Baleares	U. ISLAS.BALEARES Laboratorio de Radiactividad Ambiental (LaboRA).	UBL	AGOSTO 1991
Canarias	U. LA LAGUNA (Tenerife). Laboratorio de Física Médica y Radiactividad Ambiental (FIMERALL). Servicio General de Apoyo a la Investigación (SEGAI). Facultad de Medicina.	ULL	MAYO 1991
Cantabria	U. CANTABRIA. Laboratorio .de Radiactividad Ambiental. Cátedra de Física Médica. Facultad de Medicina	UCN	JUNIO 1991
Extremadura	U. EXTREMADURA (Badajoz). Laboratorio de Radiactividad Ambiental de Badajoz (LRAB). Departamento de Física.	UBD	JULIO 1992
	U. EXTREMADURA (Cáceres). Laboratorio de Radiactividad Ambiental (LARUEX). Departamento de Física Aplicada. Facultad de Veterinaria	UCC	JUNIO 1991
Castilla - La Mancha	U. CASTILLA LA MANCHA (Ciudad Real).Laboratorio de Radioactividad Ambiental. Instituto de Tecnología Química y Medioambiental (ITQUIMA).	UCM	DICIEMBRE 1996
Castilla y León	U. LEÓN. Laboratorio de Radiactividad Ambiental. Departamento de Física, Química y Expresión Gráfica. Escuela de Ingeniería Industrial e Informática.	ULE	DICIEMBRE 1991
	U. SALAMANCA. Laboratorio de Radiaciones Ionizantes. Departamento de Física Fundamental. Edificio I+D+I.	USA	DICIEMBRE 1991
Galicia	U. LA CORUÑA. (Ferrol). Laboratorio de Radiactividad Ambiental. Departamento de Química Analítica. Escuela Universitaria Politécnica.	UCF	DICIEMBRE 1996
Madrid	CIEMAT. Departamento de Medio Ambiente. Unidad de Radiactividad Ambiental y Vigilancia Radiológica.	CIE	DICIEMBRE 1991
	U. POLITÉCNICA. Laboratorio de Ingeniería Nuclear. Departamento de Hidráulica y Energética. E. T. S. I. Caminos, Canales y Puertos	UMD	SEPTIEMBRE 2000
Cataluña	U. Politécnica de Cataluña (Barcelona). Instituto de Técnicas Energéticas (INTE). Laboratorio de análisis de radiactividad.	UPC	MARZO 2000
País vasco	U. PAÍS VASCO (Bilbao). Departamento de Ingeniería Nuclear y Mecánica de Fluidos. Laboratorio de medidas de baja actividad.	UPV	DICIEMBRE 1991
Valencia	U.DE VALENCIA. Edif. Investigación. Laboratorio de Radiactividad Ambiental	UVC	JUNIO 1991
	U. POLITÉCNICA DE VALENCIA. Laboratorio de Radiactividad Ambiental. Servicio de Radiaciones. Dpto. de Ingeniería Química y Nuclear	UVP	DICIEMBRE 1991

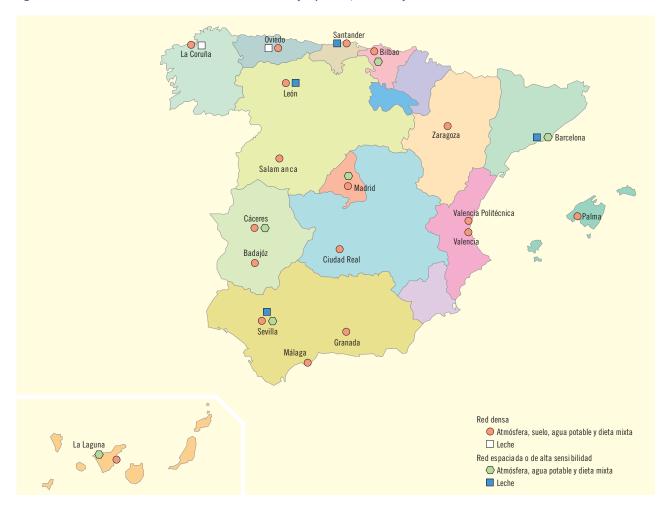


Figura 3.1. Red de Estaciones de Muestreo (REM): redes densa y espaciada, atmósfera y medio terrestre

nacional, excepto en el caso de la leche, que se toma únicamente donde la producción es mayor. También se representan en esta misma figura las seis estaciones de muestreo de aire, agua potable, leche y dieta tipo que, desde el segundo semestre de 2008, integran la red de alta sensibilidad.

1.1.2. Diseño y desarrollo del programa de vigilancia

En su diseño inicial se siguieron los requisitos establecidos en el artículo 35 del Tratado Euratom. Los puntos de muestreo seleccionados se encuentran generalmente en el campus universitario o en las inmediaciones del laboratorio responsable, si bien, en el caso del suelo y de la leche, las muestras se toman

ocasionalmente en zonas más alejadas, en puntos representativos del depósito en el terreno o de la producción lechera de la zona, respectivamente. La muestra de dieta tipo se recoge en los comedores de las universidades o en instituciones encargadas del programa y consiste en la dieta completa ingerida por una persona durante cinco días seguidos.

La red de alta sensibilidad se fue implantando a lo largo del año 2000 con la compra de los equipos y la puesta a punto de las técnicas de muestreo y analíticas necesarias. Empezaron a obtenerse los primeros resultados a lo largo de dicho año, y ya estaba completamente operativa en el año 2001.

En la tabla 3.2 se incluye un resumen de los programas de vigilancia de las redes densa y

Tabla 3.2. Programa de muestreo y análisis de la atmósfera y del medio terrestre

		Red densa		Red espaciada o de alta sensibilidad		
Tipo de muestra	Frecuencia de muestreo	Tipo de análisis	Frecuencia de análisis	Tipo de análisis	Frecuencia de análisis	
Aerosoles	Muestreo continuo Cambio de filtro semanal	Alfa total Beta total Espectrometría gamma Sr-90	Semanal Semanal Mensual Trimestral	Cs-137 (espectrometría gamma) Be-7 (espectrometría gamma)	Semanal Semanal	
Radioyodos	Muestreo continuo Cambio semanal del cartucho de carbón activo	I-131	Semanal			
Suelo (depósito total)	Anual	Beta total Espectrometría gamma Sr-90	Anual Anual Anual			
Agua potable	Mensual	Alfa total Beta total Espectrometría gamma Sr-90	Mensual Mensual Mensual Trimestral	Alfa total Beta total Beta resto H-3 Sr-90 Cs-137 Isótopos naturales	Mensual Mensual Mensual Mensual Mensual Mensual Bienal	
Leche	Mensual	Espectrometría gamma Sr-90	Mensual Mensual	Sr-90 Cs-137 (espectrometría gamma)	Mensual Mensual	
Dieta tipo	Trimestral	Espectrometría gamma Sr-90	Trimestral Trimestral	Sr-90 Cs-137 (espectrometría gamma) C-14	Trimestral Trimestral Trimestral	

espaciada o de alta sensibilidad en el año 2021. La frecuencia de muestreo y análisis de las muestras depende del medio a que pertenecen; la vigilancia de la calidad del aire, como vehículo de transporte rápido de posibles contaminantes, es a la que mayor esfuerzo dedica el programa.

La recogida de las muestras es responsabilidad de los laboratorios, que disponen de los equipos necesarios para su realización. Tanto el proceso de recogida de muestras como el de realización de análisis se lleva a cabo de acuerdo con procedimientos escritos que siguen las directrices de las normas UNE y de los procedimientos publicados por el CSN. En el caso de las medidas de espectrometría gamma los isótopos sobre

los que, como mínimo, se debe suministrar información son:

- Isótopos naturales: ⁷Be, ⁴⁰K, ²⁰⁸Tl, ²¹²Pb, ²¹⁴Bi y ²¹⁴Pb.
- Isótopos artificiales: ⁵¹Cr, ⁵⁴Mn, ⁵⁸Co, ⁶⁰Co, ⁵⁹Fe, ⁶⁵Zn, ⁹⁵Nb, ⁹⁵Zr, ¹⁰³Ru, ¹⁰⁶Ru, ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁰Ba, ¹⁴⁰La y ¹⁴⁴Ce.

El laboratorio también debe proporcionar información de otros isótopos artificiales diferentes a los indicados, en el caso de detectar valores superiores al LID.

Los resultados de la red de alta sensibilidad, y en el caso de la red densa siempre que se obtenga un

resultado anómalo, se envían al CSN de forma inmediata, a medida que van estando disponibles. Además, en ambas redes, los datos del programa de vigilancia son remitidos al CSN con periodicidad semestral, en un informe que incluye, además de los resultados analíticos (concentración de actividad, incertidumbre asociada a la medida y valor numérico del límite inferior de detección), información sobre el grado de cumplimiento del programa en el periodo considerado, causas que han motivado las desviaciones producidas (si las hubiera) en relación con el programa previsto y acciones correctoras que se han tomado. También incluye información complementaria sobre las fechas de muestreo y análisis, tiempo de recuento de la muestra, cantidad de muestra utilizada para la realización de la medida y rendimientos químicos, en aquellas determinaciones analíticas que necesiten una preparación química de la muestra antes de efectuar la medida de actividad. Adicionalmente, los resultados son facilitados en soporte informático, para su carga automática en la base de datos del CSN sobre vigilancia radiológica ambiental.

El CSN evalúa los resultados de estos programas, prestando especial atención a su calidad; en este contexto y con la colaboración técnica del Ciemat, lleva a cabo campañas anuales de intercomparación analítica en las que se requiere la participación de todos los laboratorios. Además, promueve activamente la implantación, en los laboratorios de medida de la radiactividad ambiental, de esquemas de evaluación de la conformidad, conforme a la norma ISO/IEC 17025. De esta manera, un número cada vez más elevado de laboratorios nacionales han obtenido o están en vías de obtener la acreditación de ENAC, que representa un reconocimiento formal de su competencia técnica y una manera segura de identificar aquellos laboratorios de medida que ofrecen la máxima fiabilidad en sus determinaciones analíticas.

El CSN proporciona anualmente información al Congreso de los Diputados y al Senado sobre los valores medios obtenidos en este programa y, asimismo, remite los datos de esta vigilancia a la UE en cumplimiento del artículo 36 del Tratado Euratom.

1.1.3. Resultados

Los resultados del programa de la red densa se presentan gráficamente de acuerdo con los criterios generales indicados para el PVRA de las instalaciones en operación, es decir:

- Valores medios históricos, considerando un periodo mínimo de 10 años, la numeración de estas figuras se identifica con la letra "a".
- Valores medios para la campaña del año 2021, se representan en figuras con idéntica numeración que las anteriores identificadas con la letra "b". Se incluye información sobre el número de análisis realizados, número de resultados que han sido superiores e inferiores al LID correspondiente, y rango de valores de concentración de actividad obtenidos en la campaña.

Para los análisis que se realizan específicamente en el programa de la red de alta sensibilidad, en las gráficas correspondientes al año 2021 (tipo "b"), se representan los valores puntuales obtenidos, de acuerdo con la frecuencia de muestreo y análisis que se aplica a cada tipo de muestra, es decir: semanal para aerosoles con muestreador de alto flujo, mensual para agua potable y leche, y trimestral para dieta tipo. En la información detallada se añade el valor medio de concentración de actividad obtenido en el periodo y el rango de valores de LID alcanzado por cada laboratorio.

Para el cálculo de los valores medios se consideran los valores de concentración de actividad superiores al LID, obtenidos en los índices de actividad alfa y beta y en los distintos radionucleidos de origen artificial. La ausencia de datos en las gráficas, teniendo en cuenta las fechas señaladas de incorporación al programa de cada laboratorio, indica que los valores obtenidos no

han superado el LID para el periodo y laboratorio correspondientes.

La valoración global de los resultados pone de manifiesto que los valores son coherentes con los niveles de fondo radiactivo y, en general, son relativamente estables a lo largo de los distintos periodos. En el año 2011, en relación con el accidente de la central nuclear de Fukushima, se demostró el buen funcionamiento de las redes de vigilancia en nuestro país y en ellas, como en el resto de los países de nuestro entorno, se pudo detectar en tiempo real el paso de la nube radiactiva por nuestro territorio en el periodo que abarcó desde el 23-24 de marzo hasta finales del mes de mayo, recuperándose los valores posteriormente hasta niveles por debajo de los límites de detección o característicos del fondo radiactivo.

En el año 2021 los valores se mantienen relativamente estables en comparación con periodos anteriores a ese año y se observan ligeras variaciones entre los puntos que son atribuibles a las características radiológicas de las distintas zonas.

Aire

Para una mejor interpretación de los resultados obtenidos hay que indicar que los equipos de recogida de muestras de partículas de polvo en aire utilizados en la red densa operan con caudales de aspiración entre 1,8 y 3 m³/hora, recogiéndose los filtros con frecuencia semanal; el análisis de espectrometría gamma se realiza con periodicidad mensual sobre el conjunto de filtros acumulados en cada estación de muestreo. Las muestras correspondientes a la red de alta sensibilidad se obtienen con equipos de alto flujo, con caudal de aspiración máximo de aproximadamente 900 m³/hora, y frecuencia de recogida también semanal, analizándose cada uno de los filtros por espectrometría gamma con la misma periodicidad, y realizando medidas de larga duración, durante unas 72 horas, lo que permite bajar notablemente los niveles de detección.

Índice de actividad alfa total. Al tratarse de un índice, la proporción de medidas superiores al LID suele estar próxima al 100 % en casi todos los laboratorios. Los valores medios obtenidos en cada uno de ellos son bastante estables a lo largo de los años, aunque se observan variaciones entre los distintos puntos de muestreo, y estas mismas variaciones son las que se aprecian en los valores medios del año 2021 (figura 3.2).

En las últimas campañas, destacar que en los resultados de la Universidad de La Coruña (Ferrol) se ha venido produciendo un aumento progresivo de los valores de LID del índice de actividad alfa total con la consecuente disminución de la proporción de detecciones por encima del LID. Por este motivo durante el año 2021 dicho laboratorio realizó un estudio de las causas y como consecuencia se ha modificado el cálculo de los blancos. Como resultado de este cambio, los blancos obtenidos, y en consecuencia los LID son menores, por lo que se detecta actividad alfa total por encima del LID en la mayoría de las muestras de aerosoles.

Índice de actividad beta total. Al tratarse de un índice, la proporción de detección de valores superiores al LID está cercana al 100 % en todos los casos. Los valores obtenidos presentan, en general, escasas variaciones a lo largo de los años (figura 3.3). En 2021 el valor medio más alto se registra en la estación de Málaga, donde se observa un ligero incremento en la última década, que está siendo objeto de estudio.

Estroncio-90. La presencia de estroncio-90 en el aire es esporádica. Su aparición puede explicarse por la resuspensión de este isótopo depositado en el suelo, procedente del poso radiactivo (figura 3.4).

Espectrometría gamma. Este análisis en las distintas muestras de aire recogidas fue el que permitió detectar la presencia de contaminación procedente del accidente de la central nuclear de Fukushima.

En el programa de la red densa y como es habitual, durante la campaña del año 2021 no se ha detectado ningún isótopo de origen artificial con actividad superior al LID en los filtros de aerosoles ni en los cartuchos para la retención de radioyodos.

Las condiciones de muestreo y medida de la red de alta sensibilidad permiten disminuir notablemente los límites de detección; en 2021 se ha detectado actividad de cesio-137 en todas las estaciones que disponen de equipos de alto flujo excepto en Sevilla y Cáceres, aunque en todo caso en proporción y niveles de actividad muy bajos (figura 3.5).

Cabe mencionar los fenómenos meteorológicos que en febrero de 2021 provocaron la llegada a España de una nube de polvo proveniente del Sahara, que fue objeto de atención especial sobre todo a través de los resultados obtenidos en estos equipos de alto flujo de la red espaciada, observándose un incremento en la proporción de detección de trazas de cesio-137 en ese periodo, pero siempre dentro de los valores habituales que se detectan esporádicamente.

La detección de berilio-7, isótopo de origen cosmogénico incluido en la Recomendación de la UE como control cualitativo del método utilizado, se produce en la totalidad de las muestras en concentraciones varios órdenes de magnitud superiores a sus correspondientes LID; se representan los resultados semanales correspondientes a la red de alta sensibilidad (figura 3.6).

Suelo (depósito acumulado)

Índice de actividad beta total. Este índice, para el que siempre se obtienen valores de actividad por encima del LID, permite estimar de forma rápida el contenido de radiactividad del suelo, cuyo origen podrá ser tanto natural como artificial, y decidir si es necesario realizar determinaciones específicas de emisores beta. Los valores en 2021 son similares a los obtenidos en años anteriores en cada punto (figura 3.7).

Estroncio-90. El inventario de isótopos radiactivos artificiales de vida larga procedentes del poso radiactivo, como son estroncio-90 o cesio-137 presentes en el suelo, aún es considerable. Los niveles más altos de estroncio-90 se suelen medir en Badajoz, La Laguna, Granada y Málaga, sin embargo se han registrado en el año 2021 en Salamanca (figura 3.8). En esta campaña se han detectado valores de estroncio-90 en Salamanca superiores a los obtenidos en campañas anteriores en diferentes muestras, el laboratorio informó que está estudiando las posibles causas y que en cualquier caso se va a realizar un seguimiento detallado de los análisis de estroncio-90 durante la campaña de 2022.

Espectrometría gamma (cesio-137). La concentración de cesio-137 en el suelo, procedente del poso radiactivo, resulta generalmente más elevada en los puntos en que se recogen las muestras de El Ferrol, Oviedo, Granada, Valencia y La Laguna, situación que se mantiene también en los resultados del año 2021 (figura 3.9).

Agua

Agua potable

En la versión consolidada del Real Decreto 140/2002 de 7 de febrero por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano (modificado por el RD 314/2016), se indica que un agua es apta para el consumo humano si cumple, entre otros, los valores paramétricos de su anexo X "Control de sustancias radiactivas en aguas de consumo humano". Estos valores paramétricos son 500 Bq/L para radón, 100 Bq/L para tritio y 0,1 mSv para la dosis indicativa (DI)¹.

Para el control de la DI en el agua de consumo humano se utilizará la medida del índice de actividad alfa total y del índice de concentración

Dosis indicativa (DI): la dosis efectiva comprometida por un año de ingesta debida a todos los radionucleidos cuya presencia se haya detectado en un abastecimiento de agua destinada al consumo humano, ya sean de origen natural o artificial, excluidos el tritio, el potasio-40, el radón y los productos de desintegración del radón de vida corta.

de la actividad beta total y beta resto, que son parámetros que miden la cantidad de actividad total que hay en una muestra por radionucleidos emisores de radiación alfa, beta o beta resto (excluido el potasio-40). Si la concentración de actividad alfa total, beta total o beta resto son superiores a 0,1 Bq/L (100 Bq/m³), 1 Bq/L (1000 Bq/m³) y 1 Bq/L (1000 Bq/m³) respectivamente, se deberán realizar análisis de radionucleidos específicos. A partir de las concentraciones de estos radionucleidos se calculará la DI aplicando la siguiente fórmula

$$\sum \frac{Ci \, (med)}{Ci \, (der)} \leq l$$

donde, Ci (med) = concentración medida del radionucleido i
Ci (der) = concentración derivada del radionucleido i
n = número de radionucleidos detectados.

Si se satisface dicha fórmula, se puede considerar que la DI es inferior al valor paramétrico de 0,1 mSv y no se deberá realizar ninguna acción adicional, en caso contrario, se deberá actuar según lo indicado en el citado real decreto.

Índice de actividad alfa total. En el año 2021, no se ha superado en ninguna muestra el valor establecido para el índice de actividad alfa total (figura 3.10) en el real decreto.

Índice de actividad beta total. Al tratarse de un índice, la detección de actividad beta total en agua potable se sitúa en torno al 100 % en la mayoría de los puntos. Los valores de 2021 son similares en cada punto a los del año anterior, los valores más altos en La Laguna, Barcelona y Sevilla. En esta campaña ninguna muestra ha superado los valores establecidos para el índice de actividad beta total en el Real Decreto 314/2016 relativo a la calidad del agua de consumo humano (1.000 Bq/m³) (figura 3.11).

Îndice de actividad beta resto. Esta medida solo se determina en el programa de la red espaciada y

proporciona los valores de actividad beta, una vez que a la concentración de actividad beta total se le sustrae el aporte correspondiente al potasio-40. Tanto los valores de concentración de actividad como el porcentaje de medidas detectadas son inferiores a los observados para la medida de beta total, detectándose en 2021 en los distintos puntos en un porcentaje variable (figura 3.12).

Estroncio-90. En el caso del estroncio-90 hay variabilidad en las proporciones de detección y en los niveles de actividad entre los distintos puntos (figura 3.13). Cómo se ha indicado anteriormente, en esta campaña se han detectado valores de estroncio-90 en Salamanca superiores a los obtenidos en campañas anteriores en diferentes muestras, el laboratorio informó que está estudiando las posibles causas y que en cualquier caso se va a realizar un seguimiento detallado de los análisis de estroncio-90 durante la campaña de 2022.

Tritio. Este radionucleido se mide en las muestras correspondientes a la red de alta sensibilidad y, en el año 2021, como en años anteriores, todos los valores de actividad detectados por encima del límite de detección son muy inferiores al valor paramétrico establecido para el tritio en el Real Decreto 314/2016 relativo a la calidad del agua de consumo humano (100.000 Bq/m³) (figura 3.14).

Espectrometría gamma (cesio-137). Habitualmente en el programa desarrollado para la red densa no se detecta actividad de isótopos artificiales en ninguna de las muestras analizadas. Los laboratorios participantes en la red de alta sensibilidad utilizan procedimientos de separación radioquímica del cesio, partiendo del análisis de volúmenes de hasta 1.000 litros de agua y tiempos de contaje de hasta 214 horas; estas técnicas analíticas han permitido disminuir los límites de detección hasta valores muy bajos, netamente inferiores a los registrados en otros países, a pesar de lo cual la proporción de detección es bastante baja. En el año 2021, como en los cuatro años anteriores, no se ha detectado en ninguna muestra (figura 3.15).

Leche

Los seis laboratorios donde se analizan muestras de leche recogen las muestras en las zonas de mayor producción lechera del país.

Estroncio-90. La detección de estroncio-90, cuya presencia se atribuye al poso radiactivo, se produce en prácticamente la totalidad de las muestras.

Los valores de concentración de actividad se mantienen bastante homogéneos en cada uno de los puntos (figura 3.16).

Espectrometría gamma (cesio-137). La presencia de este isótopo se asocia también con el aporte debido al poso radiactivo y la proporción de muestras que presentan valores de concentración de actividad superiores al LID varía notablemente entre los distintos laboratorios. En algunos casos reflejan diferencias en los procedimientos analíticos utilizados y en los límites de detección alcanzados. Al igual que en campañas anteriores, hasta ahora no se han detectado valores por encima del LID en las muestras de Oviedo y Sevilla, y los valores más altos de cesio-137 se dan en El Ferrol y Cantabria (figura 3.17).

Dieta tipo

Estroncio-90. Se detecta actividad de estroncio-90 con valores muy bajos en muchas de las muestras

de dieta tipo analizadas (figura 3.18), que desde la campaña de 2008 se realizan también para el programa de la red densa. Como se ha indicado anteriormente, en esta campaña se han detectado valores de estroncio-90 en Salamanca superiores a los obtenidos en campañas anteriores en diferentes muestras, el laboratorio informó que está estudiando las posibles causas y que en cualquier caso se va a realizar un seguimiento detallado de los análisis de estroncio-90 durante la campaña de 2022.

Espectrometría gamma (cesio-137). Este análisis también se ha incorporado en el programa de la red densa desde 2008, detectándose actividad de cesio-137 esporádicamente en los laboratorios participantes tanto en la red de alta sensibilidad, como en los de la red densa (figura 3.19).

Carbono-14. En 2008 se incluyó por primera vez el análisis de carbono-14 en muestras de dieta tipo en el programa de los laboratorios de la red de alta sensibilidad (figura 3.20). Para su determinación se utilizan metodologías de espectrometría de masas y medida con acelerador o bien otras técnicas de centelleo líquido, alcanzándose niveles de detección mucho más bajos con la primera de estas técnicas. Los valores de carbono-14 en el año 2021 son similares a los de las campañas anteriores, detectándose actividad por encima de los límites de detección en la mayor parte de las muestras analizadas.

Figura 3.2a. Partículas de polvo en aire Evolución temporal del índice de actividad alfa total

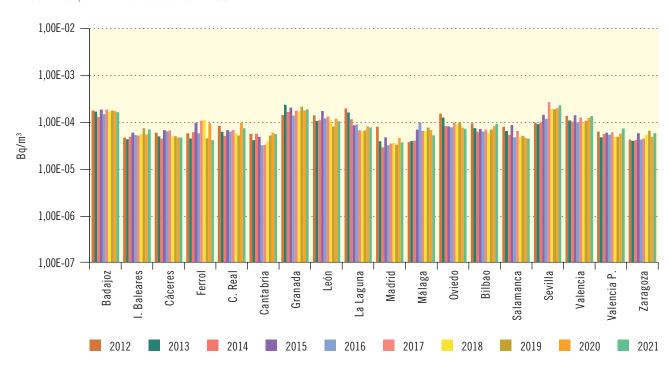


Figura 3.2b. Partículas de polvo en aire. Concentración del índice de actividad alfa total (Bq/m³) Valores de la campaña de 2021

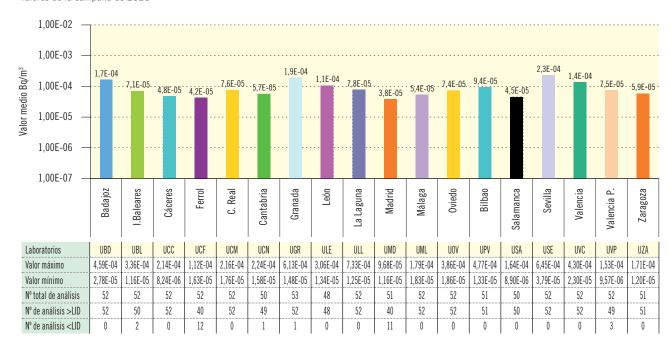


Figura 3.3a. Partículas de polvo en aire Evolución temporal del índice de actividad beta total

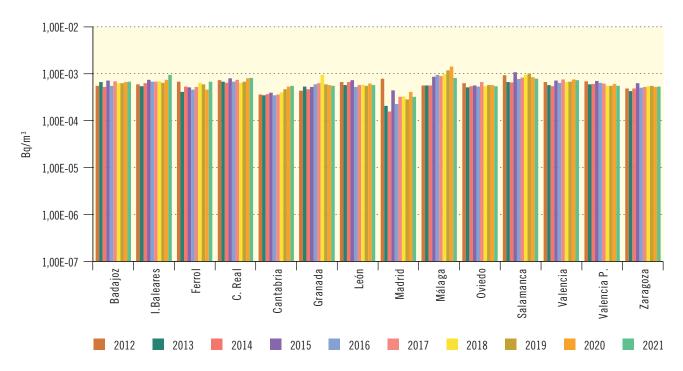


Figura 3.3b. Partículas de polvo en aire. Concentración del índice de actividad beta total (Bq/m³) Valores de la campaña de 2021

Figura 3.4a. Partículas de polvo en aire Evolución temporal de la concentración de actividad de Sr-90

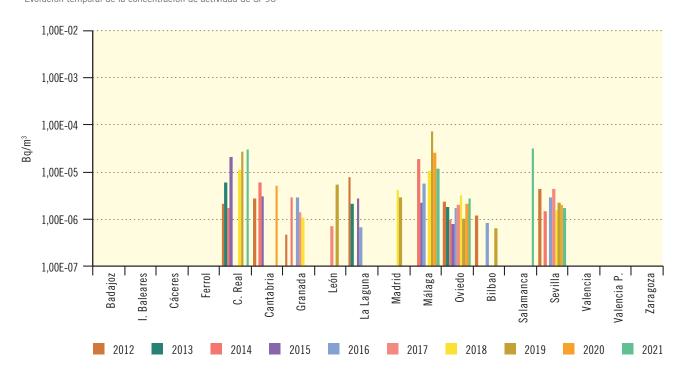
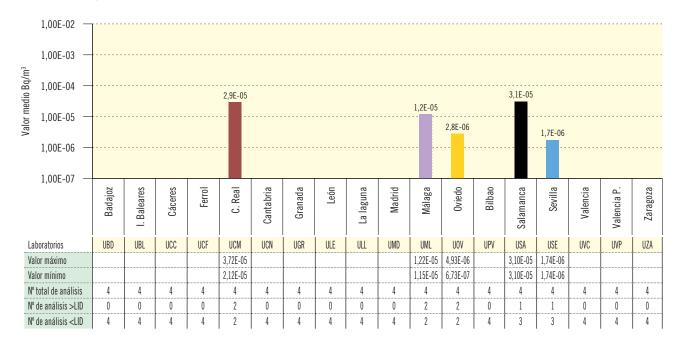



Figura 3.4b. Partículas de polvo en aire. Concentración de actividad de Sr-90 (Bq/m³) Valores de la campaña de 2021

Figura 3.5a. Red de alta sensibilidad. Partículas de polvo en aire. Muestreador alto flujo. Evolución temporal de la concentración de actividad de Cs-137

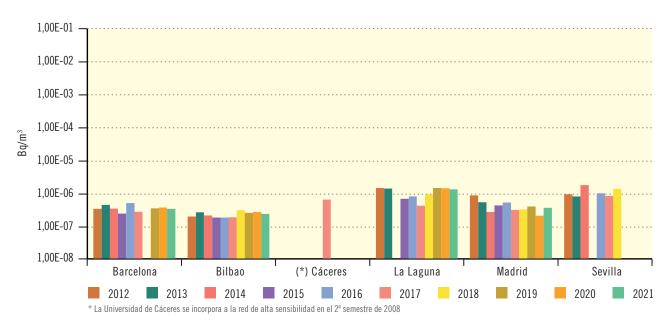


Figura 3.5b. Red de alta sensibilidad. Partículas de polvo en aire. Muestreador alto flujo. Concentración de actividad de Cs-137 (Bq/m³). Valores de la campaña de 2021

1,00E-01 1,00E-02 1,00E-03 1,00E-04 1,00E-05 1,00E-06 1,00E-07 1,00E-08 -Semanas Barcelona Bilbao — Cáceres -La Laguna Madrid --- Sevilla

Laboratorios	Barcelona	Bilbao	Cáceres	La Laguna	Madrid-Ciemat	Sevilla
Valor medio	3,60E-07	2,54E-07		1,39E-06	3,86E-07	
Valor máximo	7,49E-07	3,99E-07		1,92E-06	5,31E-07	
Valor mínimo	1,82E-07	1,49E-07		8,66E-07	2,76E-07	
LID máximo	5,73E-07	3,51E-07	1,58E-06	1,18E-06	1,51E-06	3,14E-06
LID mínimo	1,45E-07	7,21E-08	3,68E-07	2,56E-07	1,00E-07	3,88E-07
Nº total de análisis	51	52	52	52	52	48
Nº de análisis >LID	7	5	0	2	3	0
Nº de análisis <lid< td=""><td>44</td><td>47</td><td>52</td><td>50</td><td>49</td><td>48</td></lid<>	44	47	52	50	49	48

Figura 3.6a. Red de alta sensibilidad. Partículas de polvo en aire. Muestreador alto flujo Evolución temporal de la concentración de actividad de Be-7

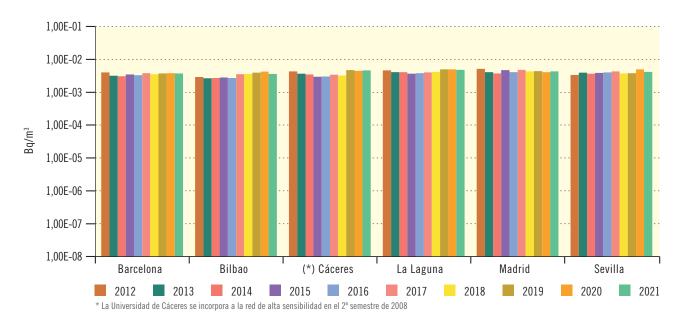
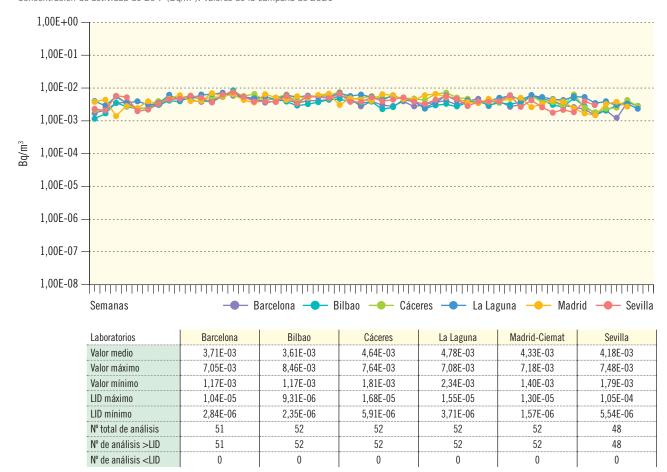



Figura 3.6b. Red de alta sensibilidad. Partículas de polvo en aire. Muestreador alto flujo Concentración de actividad de Be-7 (Bq/m³). Valores de la campaña de 2021

Figura 3.7a. SueloEvolución temporal del índice de actividad beta total

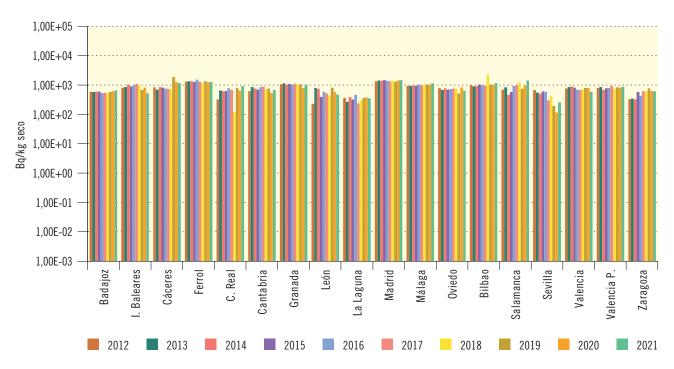


Figura 3.7b. Suelo. Concentración del índice de actividad beta total (Bq/kg seco) Valores de la campaña de 2021

Figura 3.8a. Suelo Evolución temporal de la concentración de actividad de Sr-90

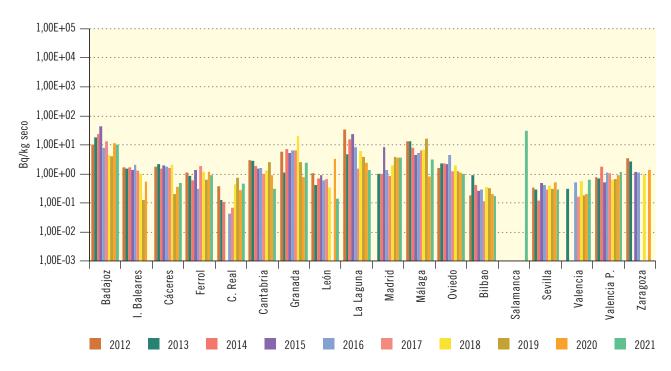


Figura 3.8b. Suelo. Concentración de actividad de Sr-90 (Bq/kg seco) $\,$ Valores de la campaña de 2021

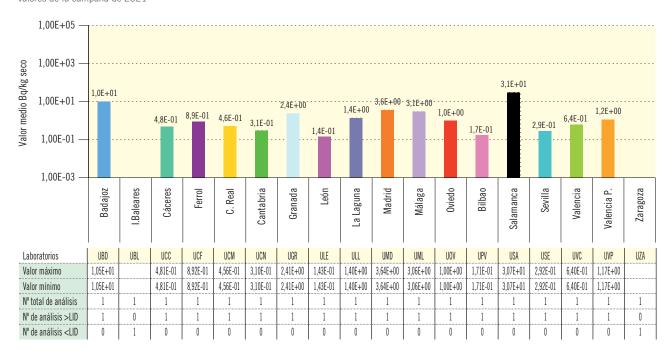


Figura 3.9a. Suelo Evolución temporal de la concentración de actividad de Cs-137

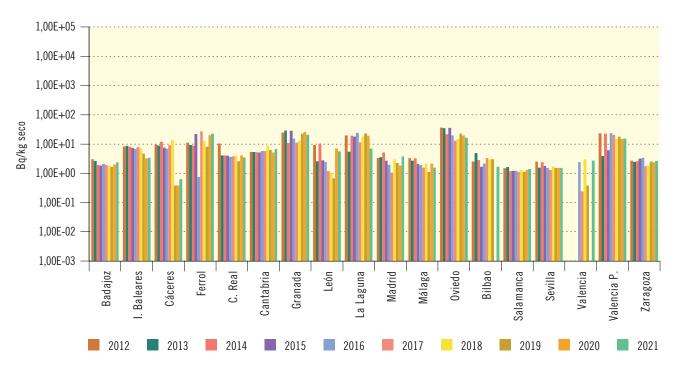
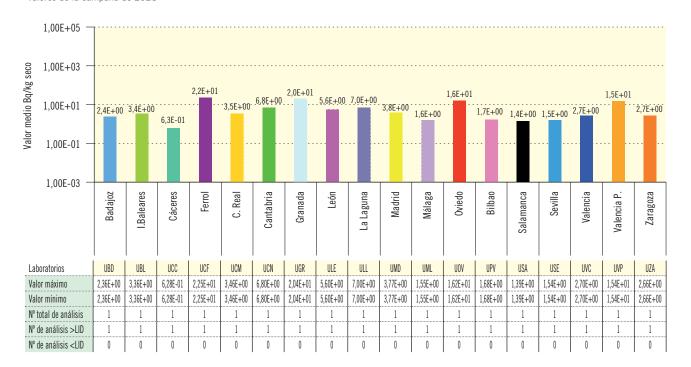



Figura 3.9b. Suelo. Concentración de actividad de Cs-137 (Bq/kg seco) Valores de la campaña de 2021

Figura 3.10a. Agua potableEvolución temporal del indice de actividad alfa total

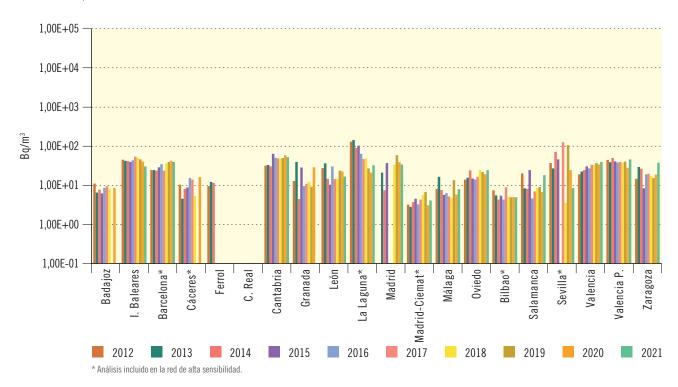
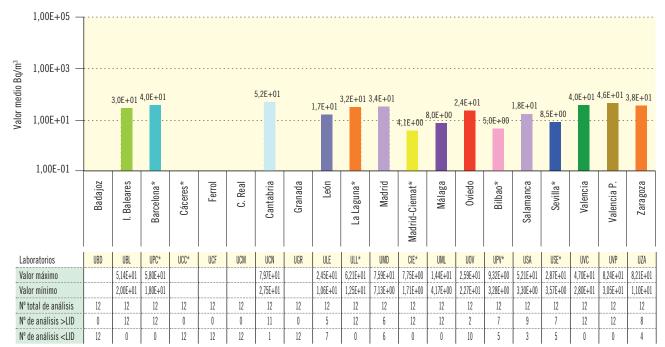



Figura 3.10b. Agua potable. Concentración del índice de actividad de alfa total (Bq/m³) Valores de la campaña de 2021

^{*}Análisis incluido en la red de alta sensibilidad.

Figura 3.11a. Agua potableEvolución temporal del indice de actividad beta total

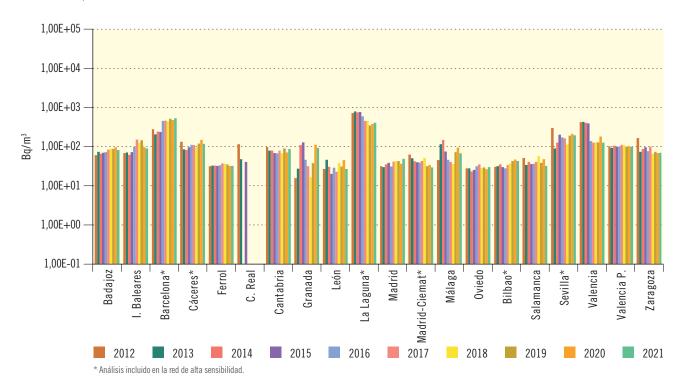
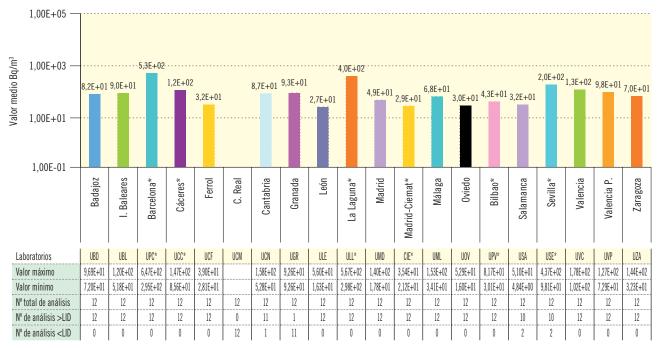



Figura 3.11b. Agua potable. Concentración del índice de actividad de beta total (Bq/m³) Valores de la campaña de 2021

^{*}Análisis incluido en la red de alta sensibilidad.

Figura 3.12a. Red de alta sensibilidad. Agua potable Evolución temporal del índice de actividad beta resto

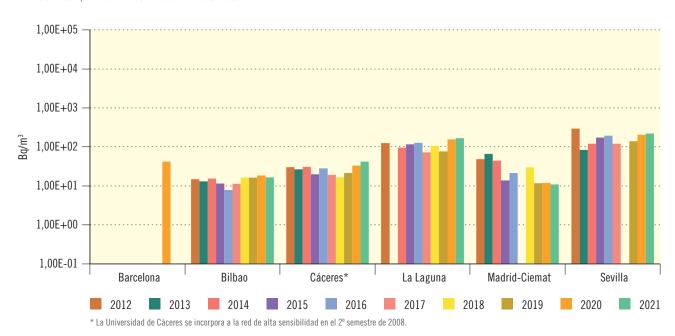


Figura 3.12b. Red de alta sensibilidad. Agua Potable. Concentración de actividad de beta resto (Bq/m³) Valores de la campaña de 2021

Figura 3.13a. Agua potable

Evolución temporal de la concentración de actividad de Sr-90

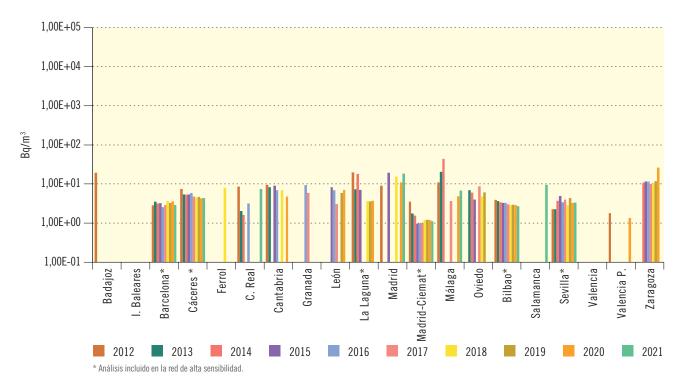
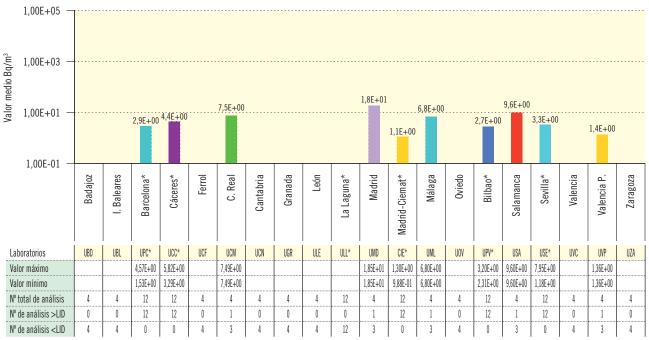



Figura 3.13b. Agua potable. Concentración de actividad de Sr-90 (Bq/m³)

Valores de la campaña de 2021

^{*}Análisis incluido en la red de alta sensibilidad.

Figura 3.14a. Red de alta sensibilidad. Agua potable Evolución temporal del índice de actividad de H-3

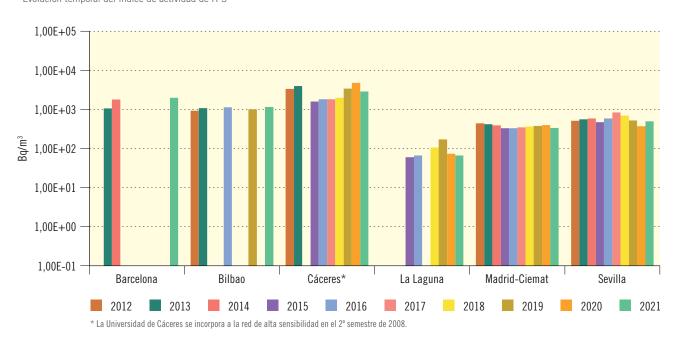


Figura 3.14b. Red de alta sensibilidad. Agua Potable. Concentración de actividad de H-3 (Bq/m³) Valores de la campaña de 2021

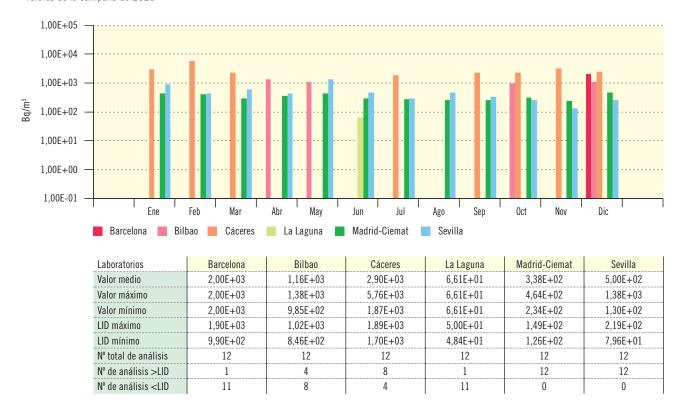
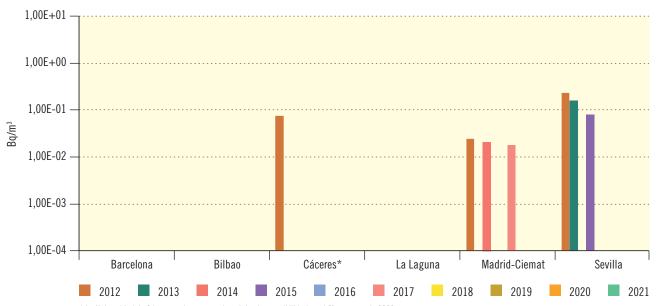



Figura 3.15. Red de alta sensibilidad. Agua potable Evolución temporal del índice de actividad de Cs-137

Figura 3.16a. Leche Evolución temporal de la concentración de actividad de Sr-90

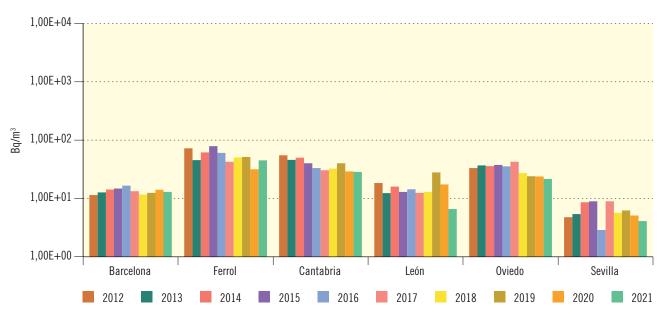


Figura 3.16b. Leche. Concentración de actividad de Sr-90 (Bq/m³) Valores de la campaña 2021

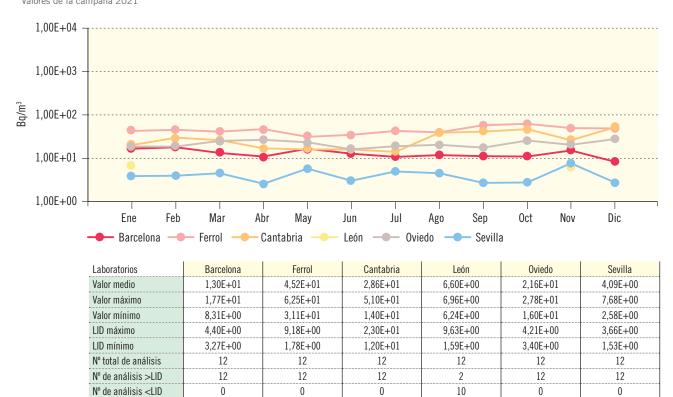


Figura 3.17a. Leche Evolución temporal de la concentración de actividad de Cs-137

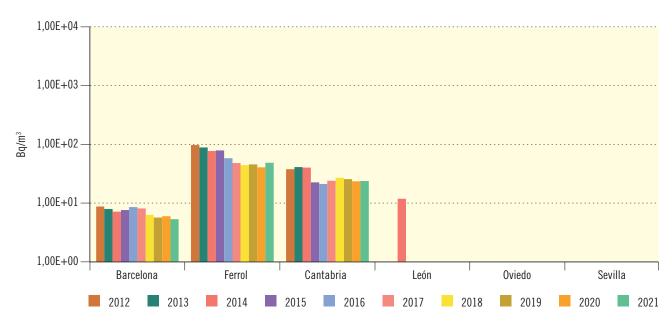


Figura 3.17b. Leche. Concentración de actividad de Cs-137 (Bq/m³)

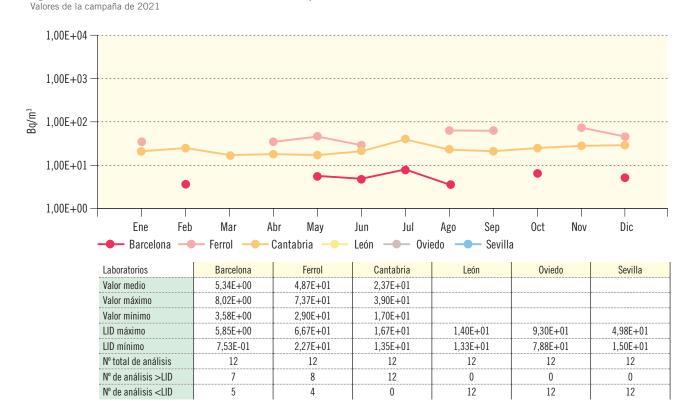


Figura 3.18a. Dieta tipo Evolución temporal de la concentración de actividad de Sr-90

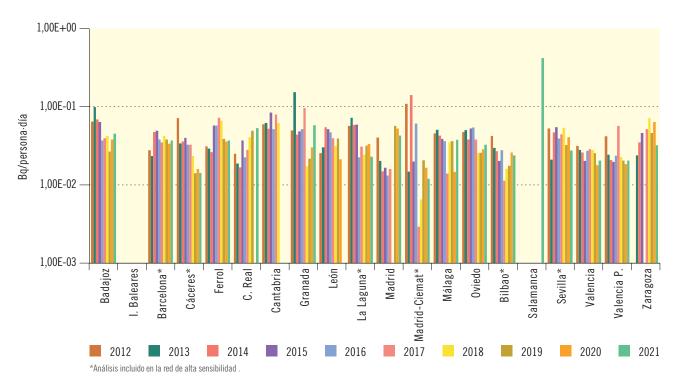
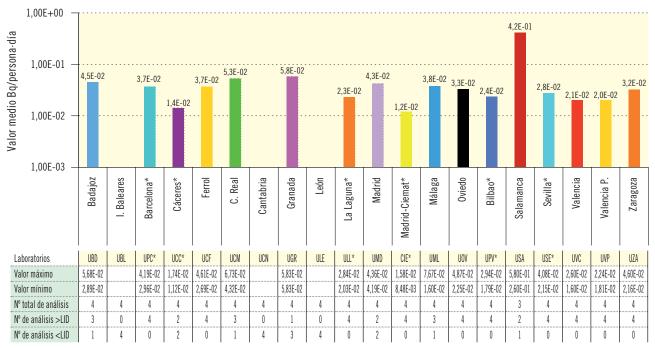



Figura 3.18b. Dieta tipo. Concentración de actividad de Sr-90 (Bq/persona·día) Valores de la campaña 2021

^{*}Análisis incluido en la red de alta sensibilidad.

Figura 3.19a. Dieta tipo Evolución temporal de la concentración de actividad de Cs-137

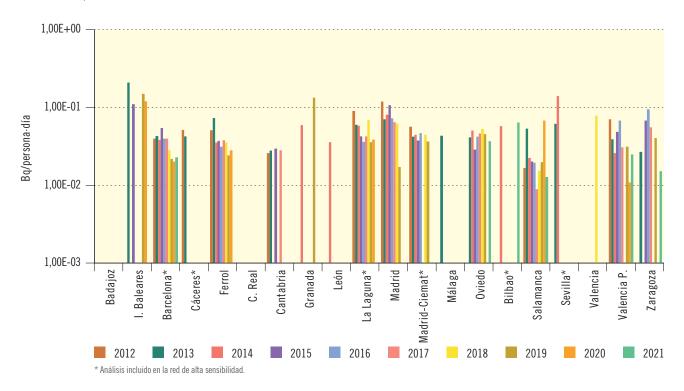
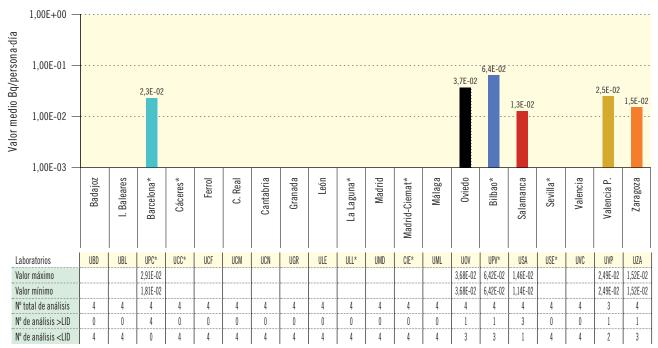



Figura 3.19b. Dieta tipo. Concentración de actividad de Cs-137 (Bq/persona·día) Valores de la campaña 2021

^{*}Análisis incluido en la red de alta sensibilidad.

Figura 3.20a. Red de alta sensibilidad. Dieta tipo Evolución temporal de concentración de actividad de C-14*

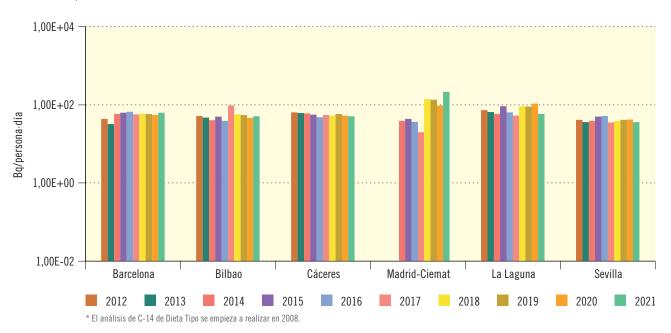
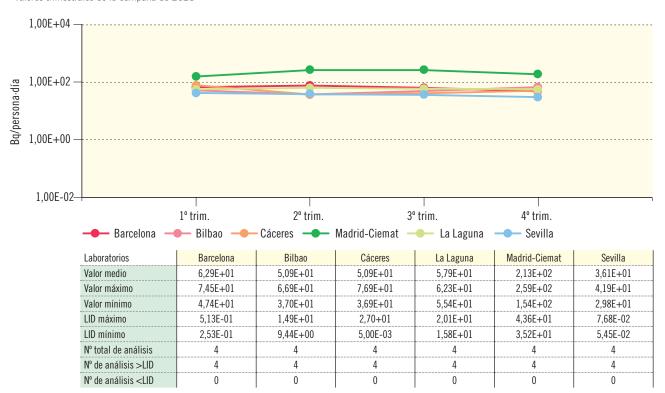



Figura 3.20b. Red de alta sensibilidad. Dieta tipo. Concentración de actividad de C-14 (Bq/persona·día) Valores trimestrales de la campaña de 2021

1.2. Vigilancia del medio acuático

La red de vigilancia del medio acuático de ámbito nacional incluye los ríos de las principales cuencas hidrográficas y las aguas del perímetro costero español.

En el año 1987 el CSN suscribió un acuerdo específico con el Centro de Estudios de Experimentación de Obras Públicas (Cedex), por el cual el CSN participaba en el programa de Vigilancia Radiológica de las Aguas Continentales Españolas que el Ministerio de Agricultura, Alimentación y Medio Ambiente mantiene y financia desde el año 1978 (entonces Ministerio de Obras Públicas y Urbanismo) y cuya realización tiene encomendada al Cedex. Con dicho acuerdo se amplió la vigilancia de las aguas continentales, incorporando medidas en el entorno de las

instalaciones nucleares, antes y después del vertido. Posteriormente, en 1993, se firmó un nuevo acuerdo específico por el que se amplió la vigilancia a las aguas costeras y de abastecimiento público. Y por último, en el año 2004 se firmó un nuevo acuerdo en virtud del cual se incluyó la vigilancia de las aguas continentales y costeras en el programa de la red de alta sensibilidad (red espaciada), para lo cual el laboratorio del Cedex implementó las técnicas analíticas adecuadas en dicha red, en cuyo desarrollo estuvo trabajando desde años anteriores.

1.2.1. Vigilancia de las aguas continentales

Estaciones de muestreo

Las estaciones de muestreo están situadas a lo largo de los ríos de las distintas cuencas hidrográficas,

Figura 3.21. Red de estaciones de muestreo de aguas continentales

tanto en zonas de potencial influencia de las instalaciones nucleares y del ciclo de combustible como en áreas alejadas de ellas, en la actualidad incluyen más de 80 puntos (véase la figura 3.21). Para la red de alta sensibilidad se seleccionaron dos estaciones: una en el río Ebro a la altura de la localidad de García en la provincia de Tarragona, y otra en el río Tajo en el embalse de Alcántara.

La recogida de las muestras generalmente es de tipo puntual, de forma manual y con una frecuencia que varía desde mensual a trimestral, excepto en aquellas estaciones situadas aguas abajo de las instalaciones nucleares en las que se utilizan dispositivos de recogida proporcional continua. En la red de alta sensibilidad, la recogida es puntual con frecuencia trimestral en los dos puntos.

En la tabla 3.3 se indican las cuencas hidrográficas, el número de estaciones consideradas en cada una de ellas y el total de muestras recogidas en la campaña del año 2021.

Diseño y desarrollo del programa de vigilancia

En el programa de la red densa, las determinaciones efectuadas en las muestras recogidas son las siguientes:

- Índice de actividad alfa total.
- Índice de actividad beta total.
- Índice de actividad beta resto.
- Tritio.
- Espectrometría gamma, los resultados que proporcionan corresponden a radionucleidos artificiales: ⁵¹Cr, ⁵⁴Mn, ⁵⁸Co, ⁶⁰Co, ⁵⁹Fe, ⁶⁵Zn, ⁹⁵Nb, ⁹⁵Zr, ¹⁰³Ru, ¹⁰⁶Ru, ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁰Ba, ¹⁴⁰La y ¹⁴⁴Ce.

En el programa de la red de alta sensibilidad se realiza exclusivamente la determinación de la concentración de actividad de cesio-137, aplicando técnicas de separación radioquímica y partiendo de un volumen de muestra de agua continental de 350 litros y un tiempo de medida de entre tres y diez días.

El Cedex realiza el muestreo con la colaboración del personal de las confederaciones hidrográficas y efectúa el análisis de las muestras. Aplica sus propios programas de garantía de calidad a las actividades que desarrolla y participa en las campañas anuales de intercomparación organizadas por el CSN. Anualmente el Cedex presenta un informe de resultados al CSN.

El CSN evalúa los resultados obtenidos y facilita, anualmente, a la Unión Europea la información requerida en cumplimiento del artículo 36 del

Tabla 3.3. Cuencas hidrográficas: estaciones de muestreo y número de muestras recogidas. Campaña 2021

Cuanaga hidragráficas da España	Número	de estaciones de muestreo	Número de muestras analizadas		
Cuencas hidrográficas de España	Red densa	Red espaciada	Red densa	Red espaciada	
Miño y norte de España	9		36		
Duero	13		90		
Тајо	21	1	124	4	
Guadiana	3		8		
Gualdalquivir	11		57		
Ebro	11	1	112	4	
Júcar	6		32		
Cuencas hidrográficas catalanas	7		25		
Segura	4		14		

Tratado Euratom, junto con los datos de la vigilancia de ámbito nacional del aire y del medio terrestre.

Resultados

En este documento se presentan gráficamente, por cuencas hidrográficas (figuras 3.22 a 3.61), los valores medios anuales obtenidos durante el periodo 2012 a 2021 en las estaciones de muestreo situadas en los cauces de los principales ríos, pero sin considerar sus afluentes (véanse las publicaciones anteriores para los resultados de los años 1984 a 2011).

Los resultados obtenidos en el programa de la red de alta sensibilidad se representan en la figura 3.62a, evolución temporal de la actividad de cesio-137, y en la figura 3.62b, información detallada sobre los resultados obtenidos en el año 2021.

De forma genérica, en el caso de que en un determinado periodo y punto de muestreo no aparezcan datos, implica que los valores obtenidos han estado por debajo del límite inferior de detección, salvo en casos excepcionales en que la falta de datos corresponde a modificaciones por interrupción o incorporación de un nuevo punto al programa de muestreo.

La valoración global de los resultados, considerando su evolución temporal y la ubicación de los puntos de muestreo, permite concluir lo siguiente:

• Los valores medios anuales obtenidos en 2021 para los índices de actividad alfa total, beta total y beta resto no muestran variaciones significativas respecto a los valores medios de las series históricas en la década anterior. Las oscilaciones observadas son, en general, reflejo de cambios naturales o antrópicos en la cantidad y el origen de la escorrentía, y corresponden al fondo natural de cada río. De la estación de Sevilla, no se presentan datos desde 2012, porque tras un proceso de optimización de la red de muestreo, se eliminó dicho punto del programa de vigilancia de aguas continentales de la Confederación Hidrográfica del Guadalquivir.

- Los valores medios del índice de actividad alfa total superan ligeramente en algunos ríos (Duero-Enusa, Tajo, Ebro, Guadiana) el valor de referencia de 0,10 Bq/L establecido para este índice en el Real Decreto 314/2016 para las aguas de consumo humano. Estudios específicos realizados ponen de manifiesto que el origen de la mayoría de esta actividad alfa total se explica por el contenido de uranio natural propio de la geología de las zonas por las que discurren los ríos principales y sus afluentes.
- Los valores del índice de actividad beta resto son sensiblemente inferiores a sus respectivos del índice de actividad beta total, debido a la presencia en este último del radionucleido natural potasio-40 procedente de la geología del entorno o de vertidos urbanos o arrastres de abonos agrarios en zonas de cultivos.
- La actividad de tritio presenta valores medios anuales por encima del valor de fondo natural en algunos ríos (Ebro, Tajo, Júcar y Segura) como consecuencia del vertido de los efluentes de las centrales nucleares ubicadas en el propio río o vía trasvase Tajo-Segura. Estos valores son muy inferiores al valor paramétrico de 100 Bq/L (100.000 Bq/m³) establecido en el Real Decreto 314/2016 de 29 de julio, y tienden además a disminuir progresivamente aguas abajo por las aportaciones al caudal de cada río de aguas de afluentes con bajas actividades de tritio.
- En la determinación de la actividad de radionucleidos específicos mediante la determinación de la espectrometría gamma, en ninguna de las muestras analizadas dentro del programa de la red densa se han obtenido valores de actividad individual superiores a los Límites Inferiores de Detección (LID) de los sistemas de medida.
- En los análisis de cesio-137 realizados dentro del programa de la red de alta sensibilidad, las técnicas analíticas desarrolladas han permitido detectar actividad de este isótopo por encima del LID en la mayoría de las muestras (figura 3.62).

Cuencas del norte de España

Figura 3.22. Cuencas de norte de España Evolución temporal del índice de actividad alfa total

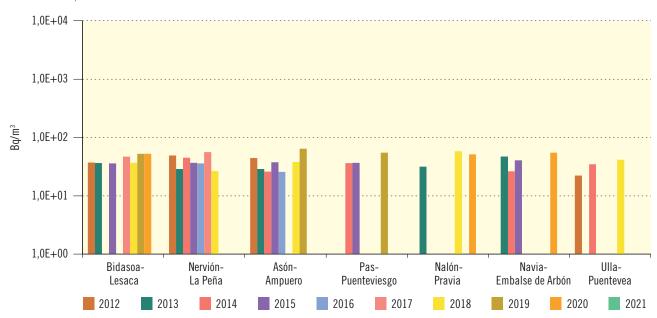


Figura 3.23. Cuencas del norte de España Evolución temporal del indice de actividad beta total

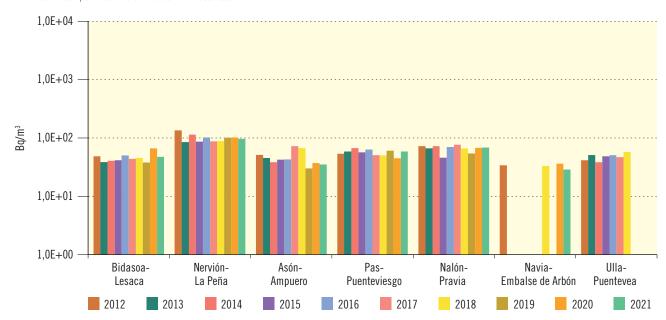
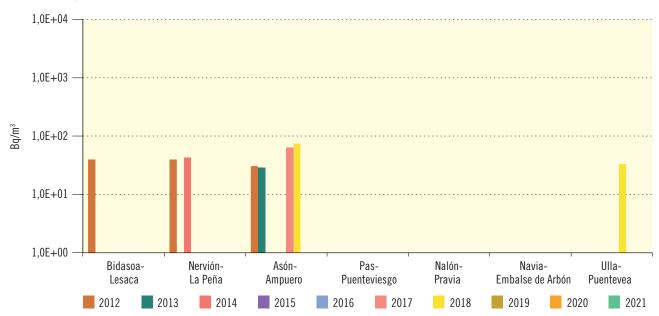
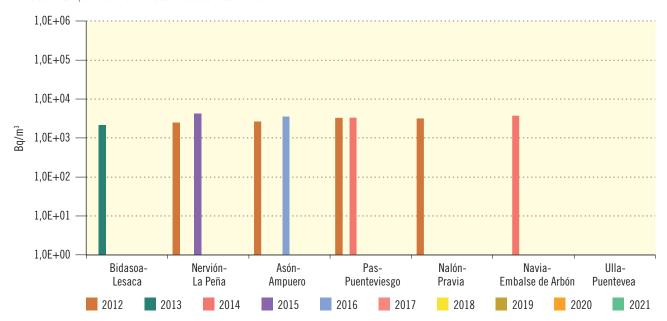
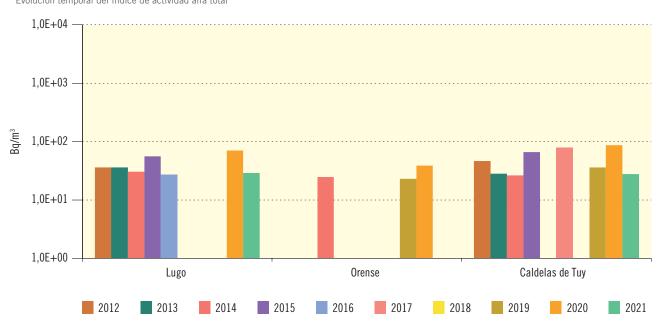


Figura 3.24. Cuencas del norte de España

Evolución temporal del índice de actividad beta resto


Figura 3.25. Cuencas del norte de España

Evolución temporal de la concentración de actividad de H-3

Río Miño

Figura 3.26. Río Miño Evolución temporal del índice de actividad alfa total

Figura 3.27. Río MiñoEvolución temporal del índice de actividad beta total

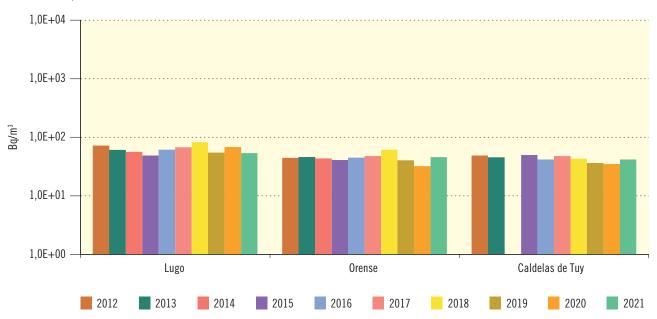
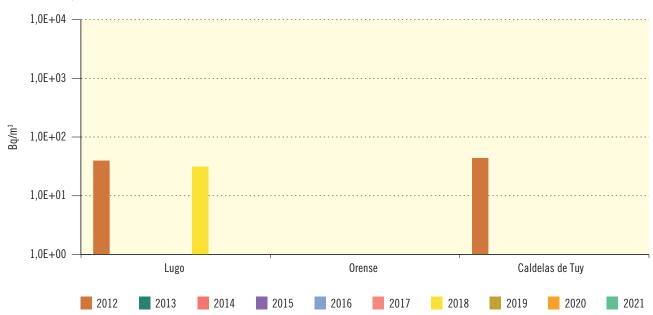
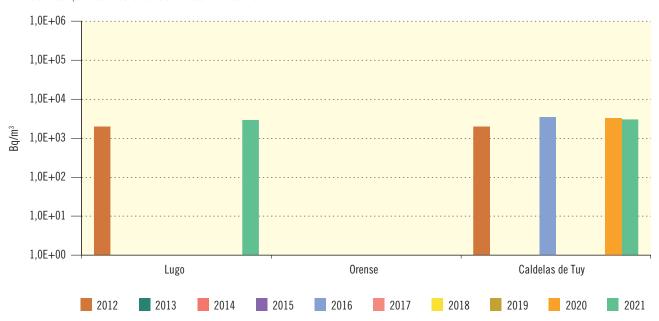
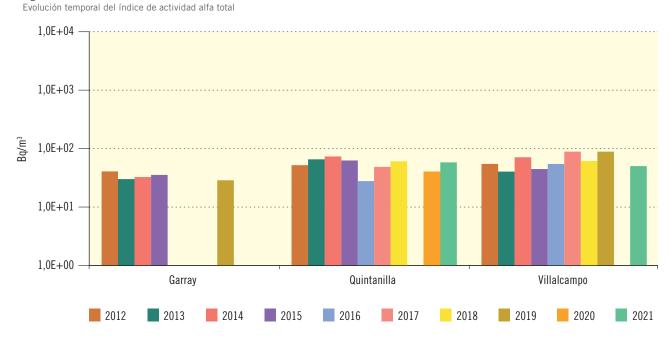


Figura 3.28. Río Miño


Figura 3.29. Río Miño

Evolución temporal de la concentración de actividad de H-3

Río Duero

Figura 3.30. Río Duero

Figura 3.31. Río DueroEvolución temporal del índice de actividad beta total

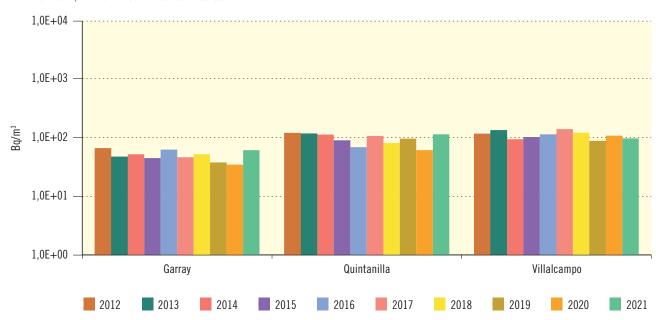
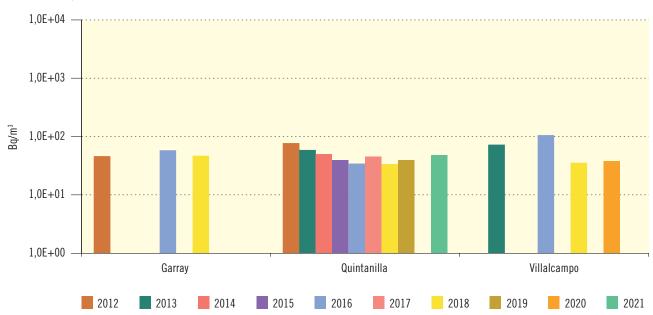
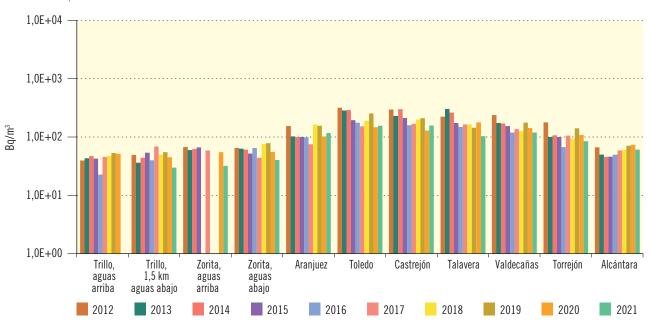
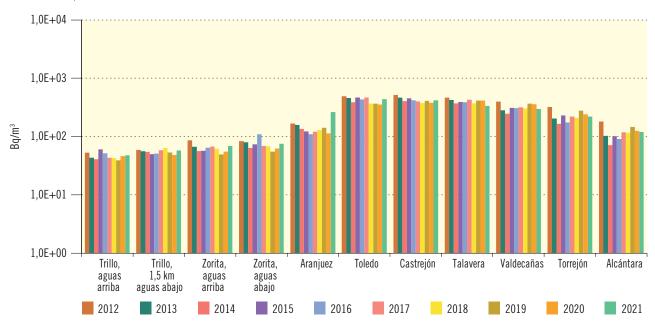


Figura 3.32. Río Duero





Figura 3.33. Río Duero

Evolución temporal de concentración de actividad de H-3



Río Tajo

Figura 3.34. Río Tajo Evolución temporal del índice de actividad alfa total

Figura 3.35. Río TajoEvolución temporal del índice de actividad beta total

Figura 3.36. Río Tajo Evolución temporal del índice de actividad beta resto

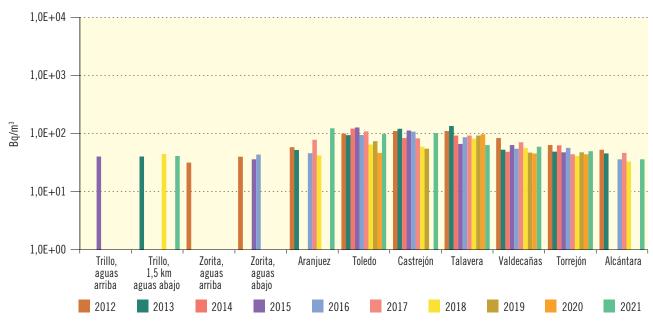
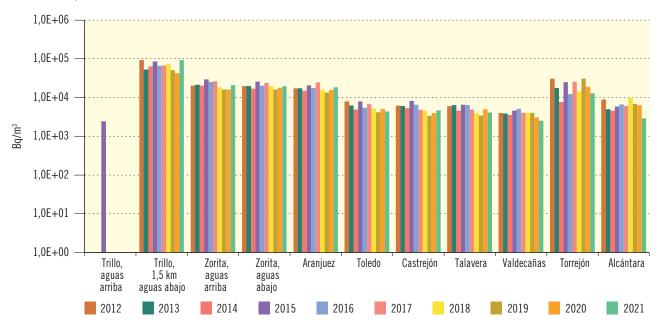
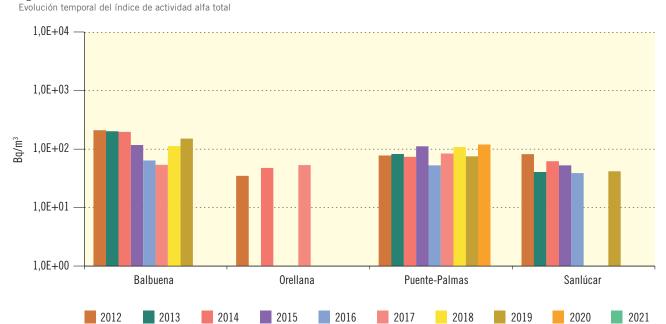




Figura 3.37. Río Tajo Evolución temporal de concentración de actividad de H-3

Río Guadiana

Figura 3.38. Río Guadiana

Figura 3.39. Río GuadianaEvolución temporal del índice de actividad beta total

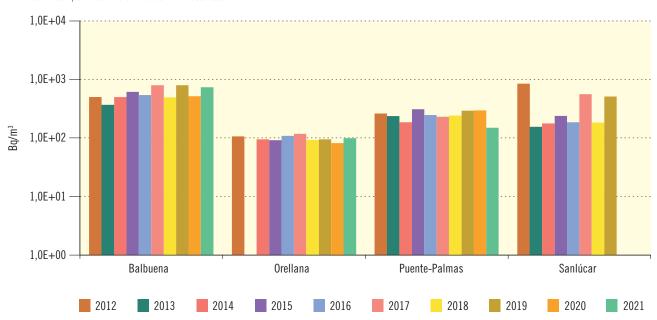
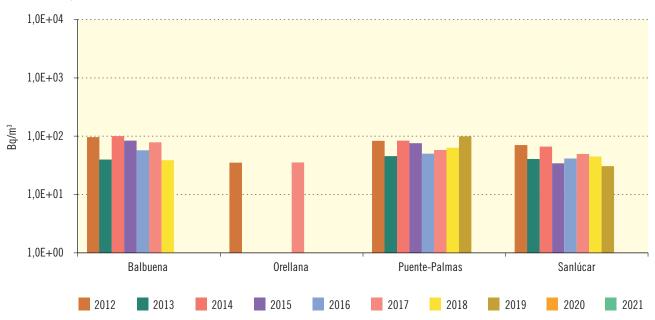
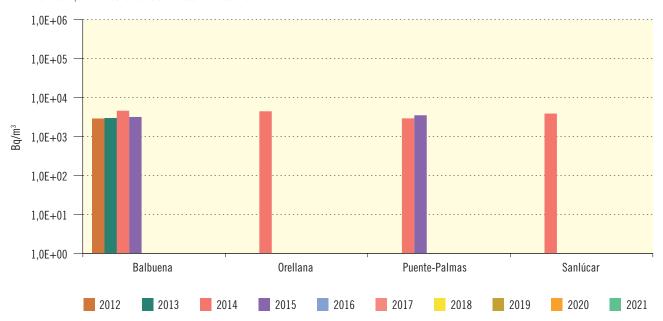
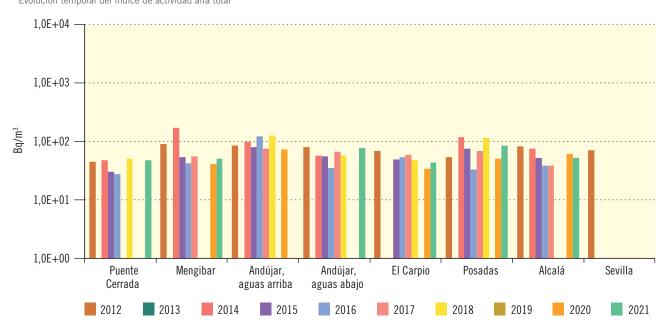


Figura 3.40. Río Guadiana


Figura 3.41. Río Guadiana

Evolución temporal de concentración de actividad de H-3

Río Guadalquivir

Figura 3.42. Río Guadalquivir Evolución temporal del índice de actividad alfa total

Figura 3.43. Río GuadalquivirEvolución temporal del índice de actividad beta total

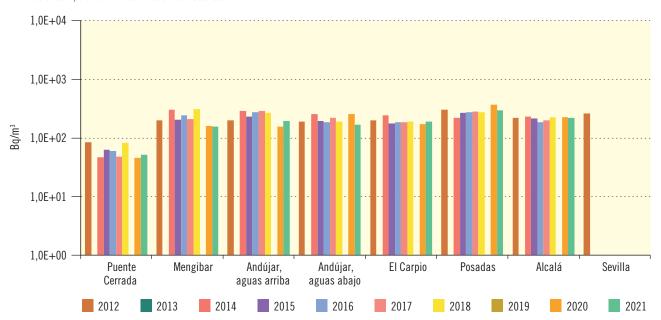
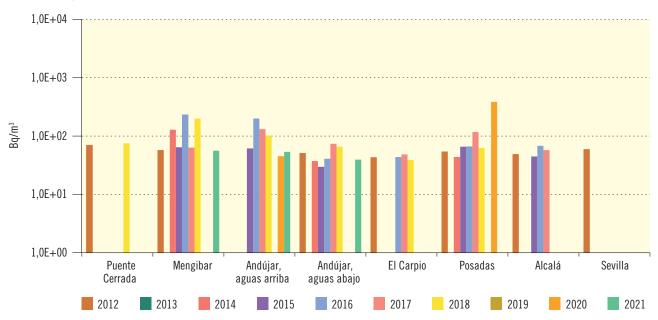
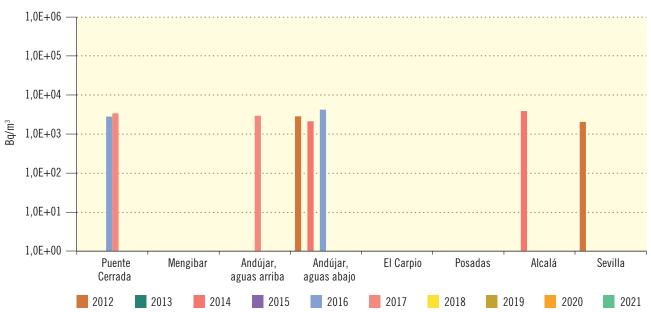
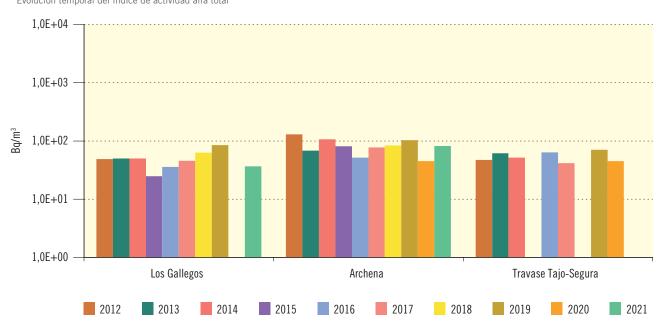


Figura 3.44. Río Guadalquivir


Figura 3.45. Río Guadalquivir

Evolución temporal de concentración de actividad de H-3

Río Segura

Figura 3.46. Río Segura Evolución temporal del índice de actividad alfa total

Figura 3.47. Río SeguraEvolución temporal del índice de actividad beta total

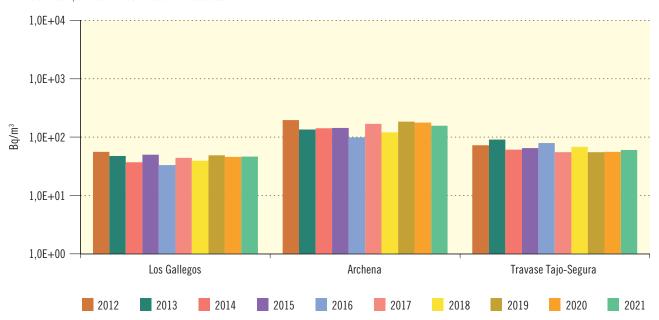
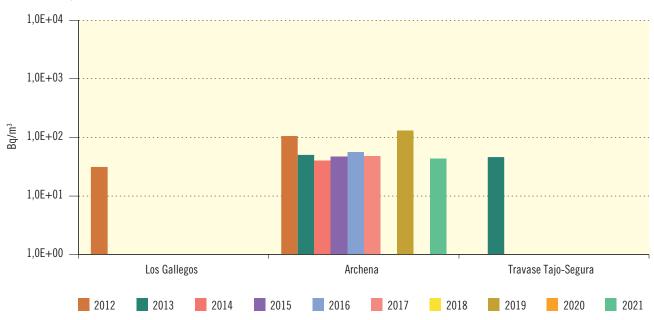
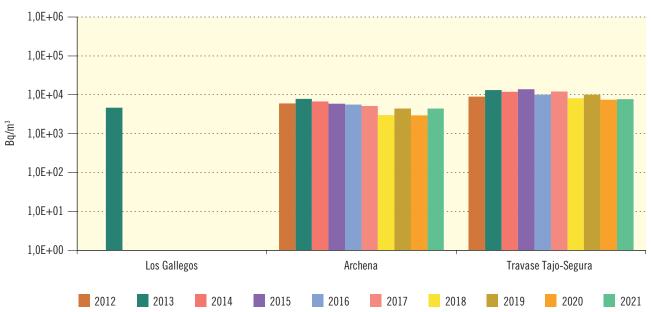
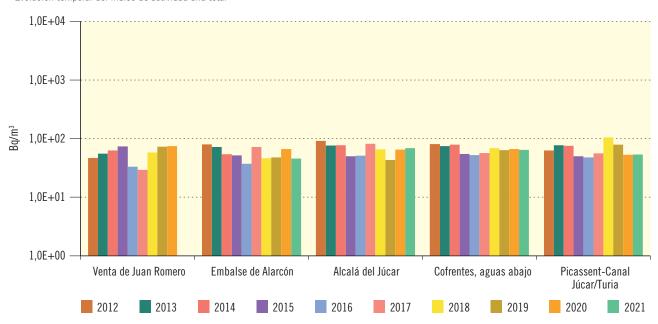
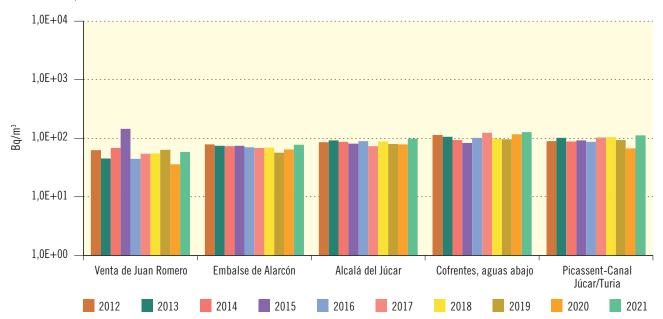


Figura 3.48. Río Segura


Figura 3.49. Río Segura

Evolución temporal de concentración de actividad de H-3



Río Júcar

Figura 3.50. Río Júcar Evolución temporal del índice de actividad alfa total

Figura 3.51. Río Júcar Evolución temporal del índice de actividad beta total

Figura 3.52. Río Júcar Evolución temporal del índice de actividad beta resto

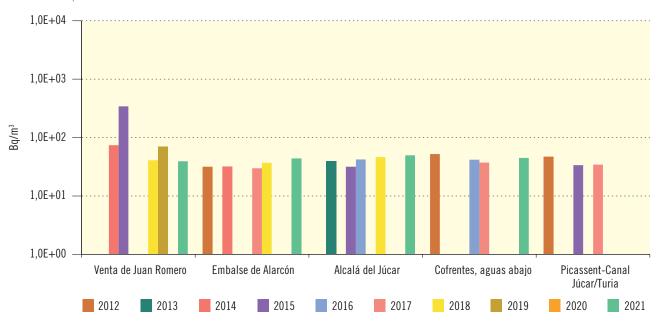
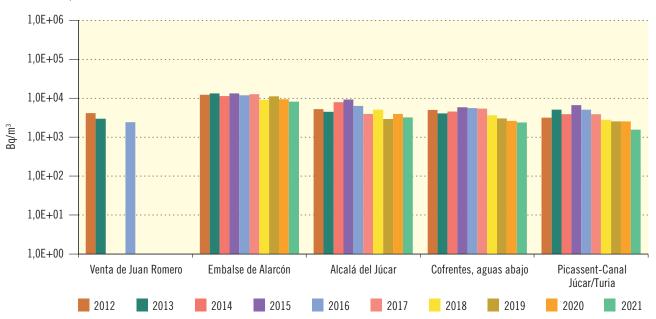
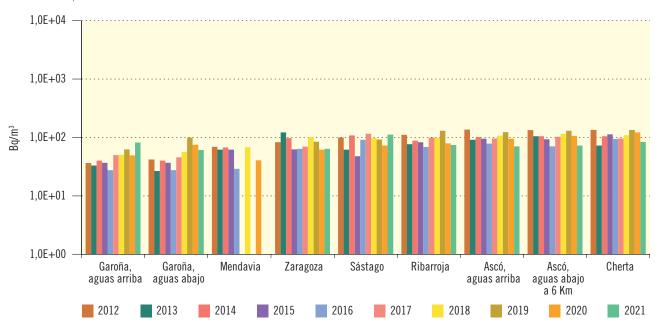
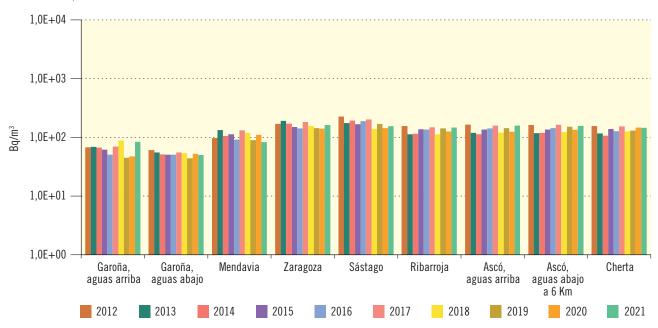




Figura 3.53. Río Júcar Evolución temporal de concentración de actividad de H-3



Río Ebro

Figura 3.54. Río Ebro Evolución temporal del índice de actividad alfa total

Figura 3.55. Río EbroEvolución temporal del índice de actividad beta total

Figura 3.56. Río Ebro Evolución temporal del índice de actividad beta resto

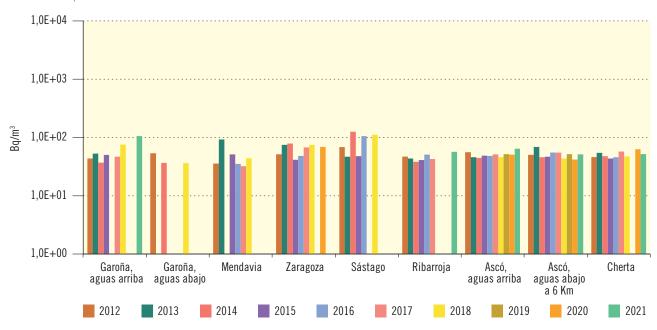
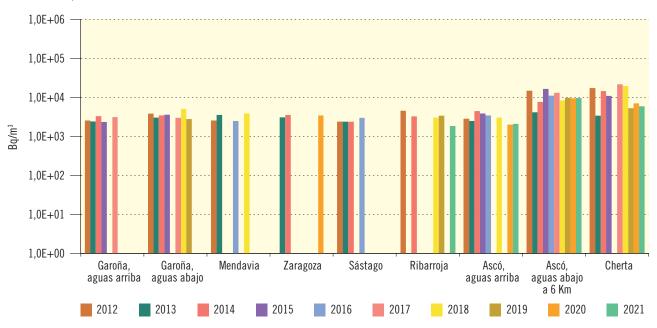



Figura 3.57. Río Ebro Evolución temporal de concentración de actividad de H-3

Cuencas catalanas

Figura 3.58. Cuencas catalanas

Figura 3.59. Cuencas catalanasEvolución temporal del índice de actividad beta total

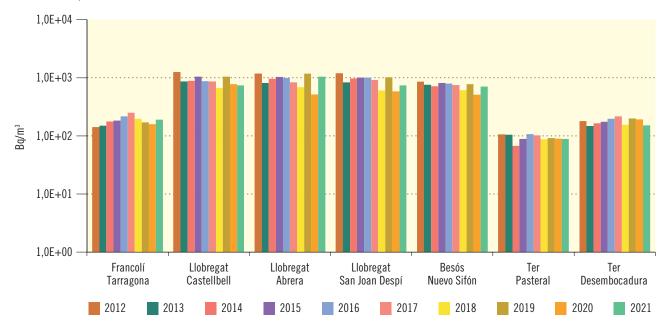


Figura 3.60. Cuencas catalanas

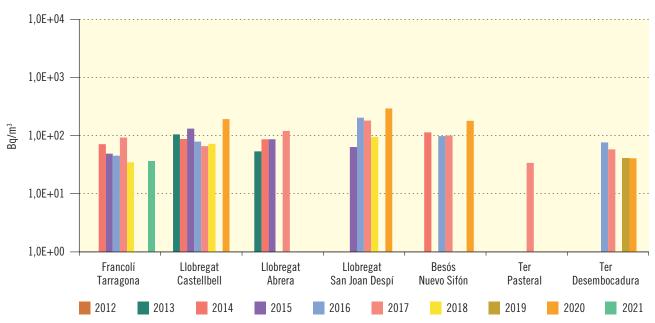
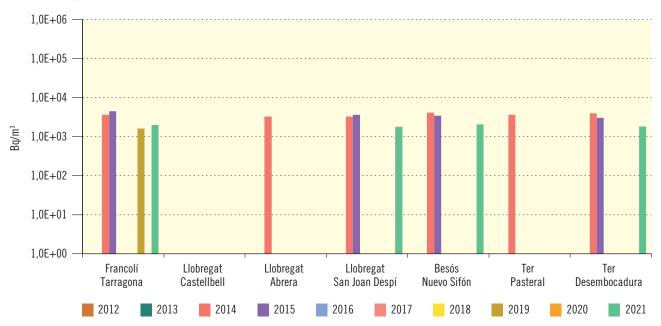



Figura 3.61. Cuencas catalanas

Evolución temporal de la concentración de actividad de H-3

Figura 3.62a. Red de alta sensibilidad. Agua superficial Evolución temporal de la actividad de Cs-137

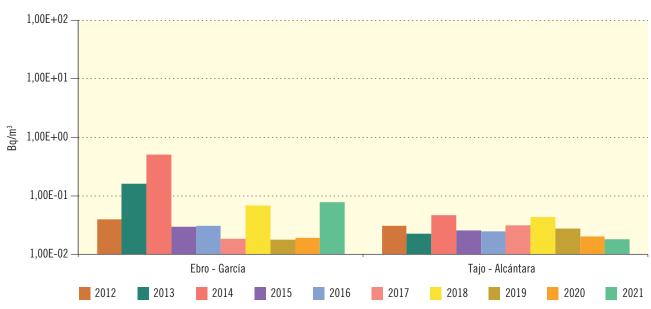
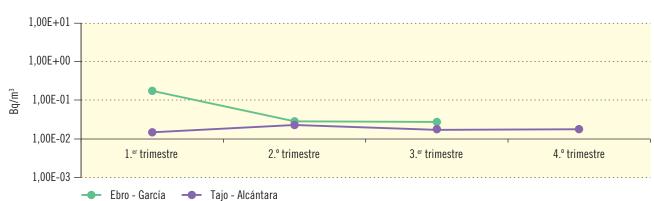



Figura 3.62b. Red de alta sensibilidad. Agua superficial Concentración de actividad de Cs-137 (Bq/m³). Valores de la campaña 2021

Estación	Ebro - García	Tajo - Alcántara
Valor medio	7,77E-02	1,83E-02
Valor máximo	1,76E-01	2,30E-02
Valor mínimo	2,80E-02	1,50E-02
LID máximo	1,60E-02	1,40E-02
LID mínimo	1,10E-02	1,00E-02
№ total de análisis	4	4
Nº de análisis >LID	3	4
Nº de análisis <lid< th=""><th>1</th><th>0</th></lid<>	1	0

1.2.2. Vigilancia de las aguas costeras

Estaciones de muestreo

Con el fin de vigilar la calidad del agua del litoral español desde el punto de vista radiológico se estableció una red de estaciones, seleccionadas de forma que por su localización y características pudieran ser representativas del litoral español (principales cabos, puertos y playas sometidas a corrientes marinas o situadas en desembocaduras fluviales).

En la tabla 3.4 figuran las 15 estaciones de muestreo que integran actualmente el programa de la red densa. Su situación a lo largo de las costas españolas se representa en la figura 3.63. Las últimas estaciones incorporadas al programa

han sido el puerto de Tarragona en el año 1999, el puerto de Palma de Mallorca en el año 2000, el puerto de Las Palmas en la campaña de 2002 y Garrucha en la campaña de 2006.

Para desarrollar el programa de la red de alta sensibilidad se han seleccionado las estaciones de cabo de Ajo en el mar Cantábrico y cabo de Creus en el mar Mediterráneo.

Diseño y desarrollo del programa de vigilancia

El desarrollo del programa es muy similar a lo indicado en el apartado referido a las muestras de aguas continentales, con la particularidad de que para la recogida de muestras, que se realiza con frecuencia trimestral, el Cedex cuenta con la colaboración de diversos organismos públicos:

Figura 3.63. Red de estaciones de muestreo de aguas marinas del CSN

Tabla 3.4. Estaciones de muestreo de agua de mar

Mar Cantábrico	Cabo de Ajo
Océano Atlántico	Cabo Ortegal Cabo Villano Cabo Silleiro Isla Cristina Puerto de Cádiz Estrecho de Gibraltar Puerto de las Palmas de Gran Canaria
Mar Mediterráneo	Garrucha Puerto de Cartagena Cabo de San Antonio Puerto de Tarragona Puerto de Barcelona Puerto de Palma de Mallorca Cabo de Creus

Dirección General de Costas, autoridades portuarias, Sociedad Estatal de Salvamento y Seguridad Marítima, etc. Las muestras de agua en superficie se toman a una distancia de 10 millas de la costa, excepto en los puertos marítimos indicados, donde las muestras se toman en la bocana.

El programa se puso en marcha en el año 1993 y realiza las mismas determinaciones analíticas que en las aguas continentales, aunque se aplican los procedimientos adecuados a las características salinas de las muestras de agua de mar. Adicionalmente, en el punto de muestreo de Garrucha, en el mar Mediterráneo, desde 2008 se incluyó la determinación de americio-241 y plutonio-239+240 para vigilar el posible impacto del accidente de Palomares en esas aguas.

Desde el año 2002 se realiza, además, la determinación de cesio-137 dentro del programa de la red de alta sensibilidad, con la utilización de procedimientos radioquímicos y partiendo, en este caso, de un volumen de agua de mar de 50 litros y un tiempo de medida de al menos tres días.

Resultados

Los resultados se presentan gráficamente de acuerdo con los siguientes criterios:

- Valores medios históricos, considerando el periodo 2012 a 2021. La numeración de estas figuras se identifica con la letra "a".
- Información detallada de los valores obtenidos para la campaña de 2021. Se presentan con idéntica numeración que las anteriores, identificadas con la letra "b", y se representan gráficamente los valores medios en el programa de la red densa y los valores puntuales en el caso de la red de alta sensibilidad.

Para el cálculo de los valores medios se consideran solo los valores de concentración de actividad superiores al LID.

Para cada determinación analítica, el conjunto de valores resulta bastante homogéneo entre los puntos de muestreo y en cada uno de ellos. Los valores medios anuales de las muestras de aguas marinas obtenidos en 2021 para los índices de actividad alfa total y beta total y beta resto no muestran variaciones significativas respecto a los valores medios de las series históricas en la década anterior. Los valores del índice de actividad beta total han sido inferiores a 15 Bq/L, mientras que los valores del índice de actividad beta resto en todas las muestras han sido inferiores al LID. La actividad de tritio presenta valores por debajo de 0,14 Bq/L.

En el programa de la red densa, como en años anteriores, no se han detectado isótopos artificiales emisores gamma en ninguna de las muestras analizadas. En todas las muestras analizadas para la red de alta sensibilidad (figura 3.68) se ha detectado concentración de actividad de cesio-137, observándose en los resultados históricos que desde el año 2002 hasta la actualidad los valores en todas las estaciones de muestreo muestran una ligera tendencia descendente dentro de su orden de magnitud habitual, esto es, inferior a 2 Bq/m³.

Figura 3.64a. Agua de mar

Evolución temporal del índice de actividad alfa total

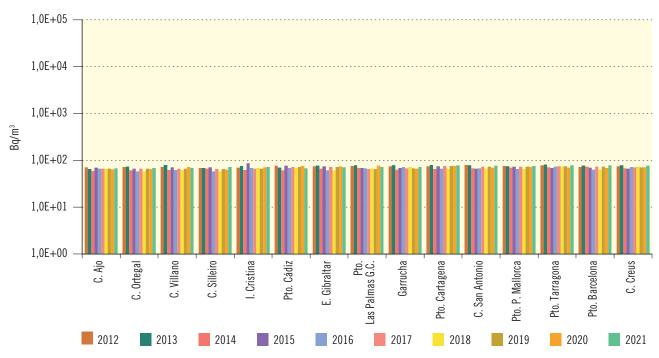
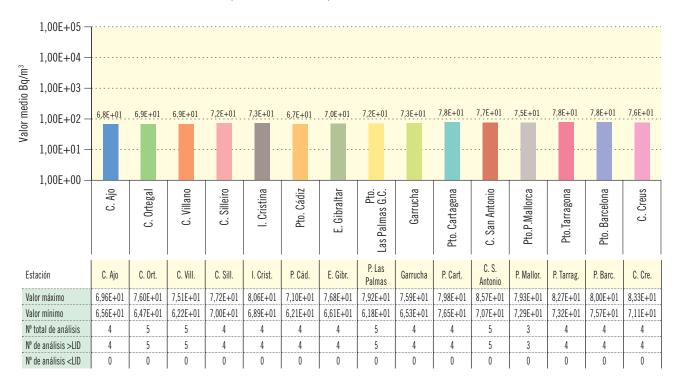
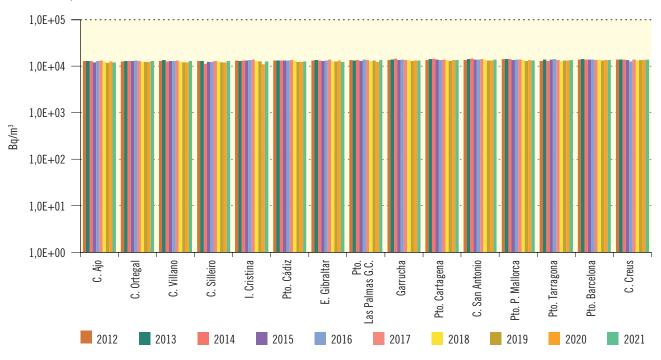
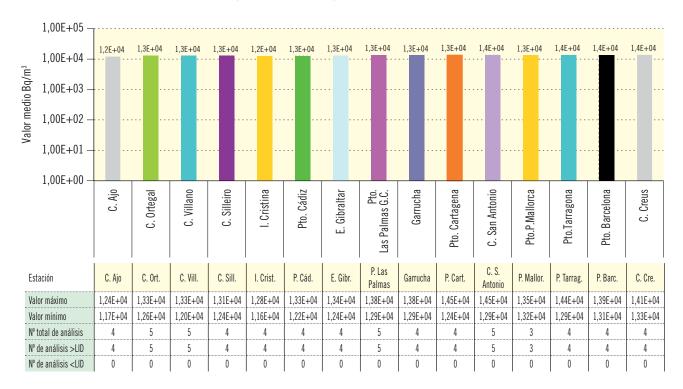




Figura 3.64b. Agua de mar


Concentración del índice de actividad alfa total (Bg/m³). Valores de la campaña de 2021

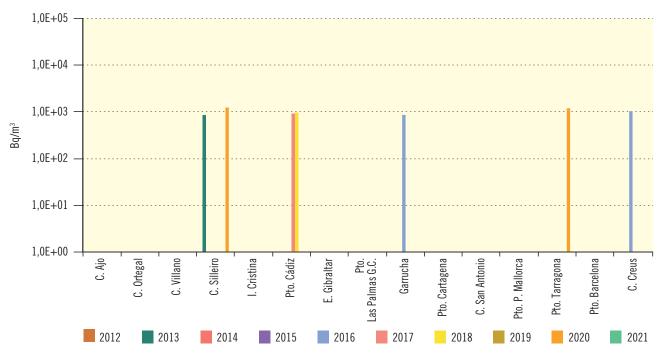

Figura 3.65a. Agua de mar Evolución temporal del índice de actividad beta total

Figura 3.65b. Agua de marConcentración del índice de actividad beta total (Bq/m³). Valores de la campaña de 2021

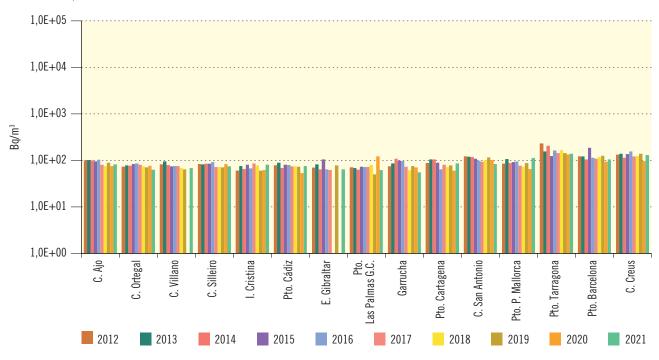
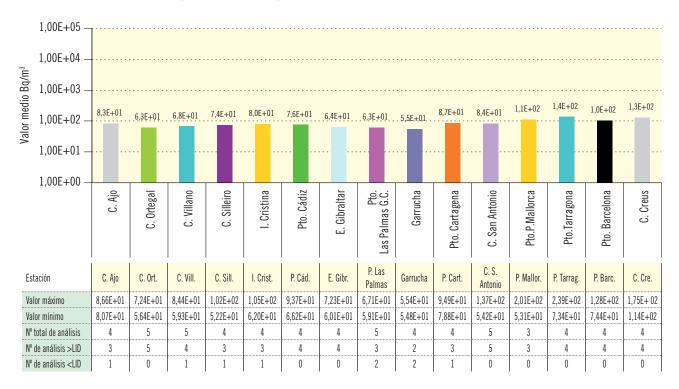
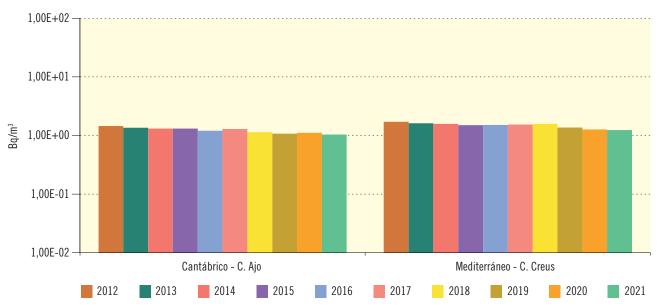
1.2.3. Convención para la protección del medio ambiente marino del Atlántico del Nordeste (OSPAR)

El objetivo fundamental de la Convención Ospar es conservar los ecosistemas marinos, la salud humana y proteger y restaurar en lo posible las áreas marinas que hayan sido afectadas negativamente por las actividades humanas mediante la prevención y eliminación de la contaminación.

El CSN participa como representante de España en el Comité de Sustancias Radiactivas (RSC) de la Convención Ospar. Las materias tratadas incluyen aquellas relacionadas con las instalaciones y actividades nucleares y no nucleares (instalaciones radiactivas e industrias NORM), que puedan originar vertidos radiactivos al océano Atlántico, bien directamente o a través de las cuencas fluviales.

En el marco de esta convención, el CSN elabora y remite anualmente los datos sobre vertidos de efluentes radiactivos de las instalaciones nucleares españolas, una estimación de los vertidos de efluentes radiactivos de las instalaciones no nucleares durante dicho año. y los datos resultantes de cesio-137 y tritio en aguas del océano Atlántico de la zona OSPAR, que corresponde a las estaciones de muestreo de cabo Ajo (Cantabria), cabo Ortegal (La Coruña), cabo Villano (La Coruña), cabo Silleiro (Pontevedra), Isla Cristina (Huelva) y puerto de Cádiz (Cádiz) (figuras 3.67 y 3.68). Adicionalmente, cada tres años, se toman muestras de algas, peces y marisco en cabo Ajo (Santander) y se analiza y envían a OSPAR los resultados de cesio-137, polonio-210, plomo-210, radio-226 y radio-228 en las mismas. En 2021 no correspondía tomar las citadas muestras trienales.

Figura 3.67a. Agua de mar Evolución temporal de la concentración de actividad H-3

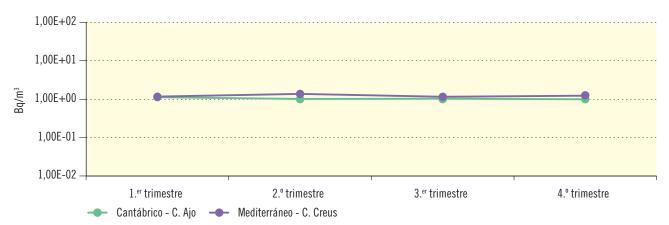

Figura 3.67b. Agua de mar Concentración de actividad de H-3 (Bq/m³). Valores de la campaña de 2021

Figura 3.68a. Red de alta sensibilidad. Agua de mar Evolución temporal de la actividad de Cs-137

Figura 3.68b. Red de alta sensibilidad. Agua de mar Concentración de actividad de Cs-137 (Bq/m³). Valores de la campaña de 2021

Cantábrico - C.Ajo	Mediterráneo - C. Creus
1,04E+00	1,24E+00
1,14E+00	1,38E+00
9,86E-01	1,16E+00
2,33E-01	2,60E-01
1,78E-01	1,81E-01
4	4
4	4
0	0
	1,04E+00 1,14E+00 9,86E-01 2,33E-01

1. Estaciones automáticas

El CSN dispone de una nueva Red de Estaciones Automáticas (REA) de vigilancia radiológica ambiental orientada a la detección temprana de radiación ambiental en caso de emergencias nucleares o radiológicas. Estas estaciones miden en continuo la radiactividad en la atmósfera de todo el territorio nacional y poseen todas ellas la capacidad de identificar los radionúclidos presentes en la atmósfera.

La nueva REA consta de 185 estaciones distribuidas como se indica en la figura 4.1 de este informe. El proceso de implantación de red se ha llevado a cabo en tres años; en el año 2019 se realizó la instalación de 44

estaciones, en el año 2020 se instalaron 71 y en el año 2021 se terminaron de instalar las 70 estaciones restantes. Las estaciones están situadas en los emplazamientos de las estaciones que conformaban la antigua REA, en emplazamientos dentro del área de planificación de las centrales nucleares españolas, en las capitales de provincias y en núcleos de población importantes.

Además, el CSN mediante acuerdos específicos con las administraciones autonómicas tiene acceso a estaciones de medida continua de las redes de Cataluña, Valencia, Extremadura y País Vasco. En total son 22 estaciones de medida en aire, como se muestra en la figura 4.2 de este informe.

Figura 4.1. Red de vigilancia radiológica ambiental (Revira) Red de Estaciones Automáticas (REA)

Figura 4.2. Red de Estaciones Automáticas de las Comunidades Autónomas

Durante el año 2021 se desarrollaron satisfactoriamente los acuerdos específicos de conexión entre la red del CSN y las redes automáticas citadas.

La recepción, gestión y análisis de los datos obtenidos en las estaciones se hace desde el Tabla 4.1 Centro de Supervisión y Control (CSC) situado en la Sala de Emergencias (SALEM) del CSN. Este Centro de Supervisión y Control está duplicado y sincronizado con el que se dispone en la Sala de emergencias de respaldo SALEM-2, situada en las dependencias del Cuartel General de la Unidad Militar de Emergencias

Variables radiológicas	Variables meteorológicas
Tasas de dosis gamma (γ)	Velocidad del viento
Concentración de actividad alfa ($lpha$)	Dirección del viento
Concentración de actividad beta (β)	Temperatura del aire
Concentración de actividad de I-131	Humedad relativa del aire
Concentración de actividad de radón	Precipitación
	Presión atmosférica

de Torrejón de Ardoz (Madrid). Esto permite el seguimiento permanente, por parte del CSN, de las medidas realizadas por la REA.

El CSN cuenta también, desde 2018, con 15 estaciones portátiles autónomas de medida de tasa de dosis para su integración en la nueva REA, que podrán ser desplegadas en las zonas afectadas por incidentes o emergencias nucleares y radiológicas. Estas estaciones disponen de sistemas de geolocalización y de transmisión de datos al centro de supervisión y control de la Sala de Emergencias del CSN.

Los datos de tasa de dosis de las nuevas estaciones REA se publican en tiempo real en la web del CSN (https://www.csn.es/varios/rea/index.html). Desde cada estación se puede acceder a las gráficas de la tasa de dosis en promedio de 10 minutos, una hora o un día.

Además en la página web del CSN (http://www.csn.es) se facilita información sobre el valor medio diario y el valor medio mensual de la tasa de dosis gamma medida en cada una de las estaciones automáticas de las redes valenciana, catalana,

extremeña y vasca. También se dispone de un archivo histórico de estos datos para consultas sobre periodos de tiempo más extensos.

Los valores horarios de las estaciones de la REA se publican además en la Plataforma Europea de Intercambio de Datos Radiológicos (EURDEP) https://remap.jrc.ec.europa.eu/Simple.aspx y en el sistema de vigilancia radiológica del OIEA "International Radiation Monitoring Information System" (IRMIS) (figura 4.3).

2. Características de la REA del CSN

La nueva red de estaciones automáticas del CSN es una red esencialmente diseñada para la gestión de emergencias, y vigila de manera continua los niveles de radiactividad en la atmósfera con las siguientes características:

 Tiene la facultad de poder detectar rápidamente pequeños incrementos en los niveles de fondo radiológico como consecuencia de incidentes o accidentes radiológicos que pudieran ocurrir en el territorio nacional o en el extranjero.

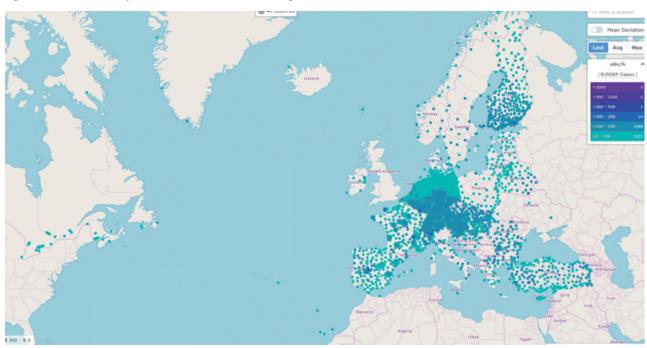


Figura 4.3. Plataforma Europea de Intercambio de Datos Radiológicos (EURDEP)

- Además de medir la tasa de dosis ambiental, tiene la capacidad de realizar análisis espectrométricos de forma continua, lo que permite conocer qué isótopos contribuyen a la cantidad de radiación medida. La sonda es un cristal de centelleo bien de NaI o de LaBr₃, adicionalmente dispone de un detector Geiger-Müller para la medida de altas tasas de dosis en el ambiente.
- Cuando los valores de radiactividad exceden de ciertos umbrales, se activan automáticamente unas alarmas que alertan a los responsables de la red.
- En el caso de un accidente nuclear o radiológico con liberación de material radiactivo a la atmósfera, la red jugaría un papel fundamental en la evaluación de la gravedad de las consecuencias radiológicas del accidente, la toma de decisiones sobre las medidas de protección a la población con el fin de minimizar sus consecuencias, así como para la información de forma continua a la población.
- Está diseñada con criterios de robustez para mantenerse operativa ante grandes emergencias como la que ocurrió en Fukushima.

Es una red de cobertura nacional cuyas estaciones se han ubicado teniendo en cuenta los siguientes criterios:

 Casi la mitad de las estaciones están dentro de los 50 km alrededor de las centrales nucleares en operación (teniendo en cuenta la futura ampliación de las zonas de planificación de los Planes de Emergencia Nuclear propuesta por el CSN (PENCA, PENGUA, PENTA y PENVA)).

- Existen estaciones en los emplazamientos de CN Sta. Mª de Garoña, de la fábrica de elementos combustibles de Juzbado y de la instalación de almacenamiento de residuos de baja y media actividad de El Cabril.
- Cada capital de provincia y ciudades autónomas dispone de una estación de espectrometría gamma.
- Las restantes estaciones se sitúan cubriendo de manera homogénea todo el territorio nacional teniendo en cuenta los emplazamientos de la antigua REA.
- Se han utilizado dependencias de la Dirección General de la Guardia Civil y ubicaciones con estaciones meteorológicas de la Aemet, mediante la firma de convenios de colaboración del CSN con ambas instituciones.

3. Resultados

Los resultados de las medidas realizadas en todas las estaciones durante 2021 muestran valores característicos del fondo radiológico ambiental, sin indicio de riesgo para la población y el medio ambiente.

En la tabla 4.2 se recogen los valores medios de tasa de dosis de las 185 estaciones de la nueva REA del CSN obtenidos durante el año 2021.

En la tabla 4.3 se recogen los valores medios de tasa de dosis obtenidos en el año 2021 en las estaciones de las redes de las comunidades autónomas.

Tabla 4.2. Valores medios de tasa de dosis estaciones REA (CSN). Año 2021

ESTACIÓN	TD (nSv/h)	ESTACIÓN	TD (nSv/h)	ESTACIÓN	TD (nSv/h)
A Coruña	103	Enguera (Valencia)	43	Pareja (Guadalajara)	44
Águilas (Murcia)	50	Falset (Tarragona)	76	Pastrana (Guadalajara)	63
Alatoz (Albacete)	77	Foz (Lugo)	73	Picassent (Valencia)	57
Albacete	87	Fraga (Huesca)	53	Pobla de Massaluca (Tarragona)	45
Alberic (Valencia)	47	Fuentealbilla (Albacete)	50	Pobla del Cervoles (Tarragona)	47

ESTACIÓN	TD (nSv/h)	ESTACIÓN	TD (nSv/h)	ESTACIÓN	TD (nSv/h)
Alcalá de Henares (Madrid)	61	Gandesa (Tarragona)	41	Ponferrada (León)	54
Alcarrás (Lleida)	57	Gandía (Valencia)	36	Pontevedra	115
Alicante	45	Gerona	91	Priego (Cuenca)	49
Almadén (Ciudad Real)	127	Granada	47	Quintana Martín Galindez (Burgos)	38
Almansa (Albacete)	52	Guadalajara	54	Reinosa (Cantabria)	67
Almaraz (Cáceres)	104	Guardo (Palencia)	83	Requena (Valencia)	74
Almería	57	Hellín (Albacete)	54	Reus (Tarragona)	72
Alpera (Albacete)	55	Herrera del Duque (Badajoz)	75	Ripoll (Girona)	75
Amposta (Tarragona)	53	Higueruela (Albacete)	72	Riudecols (Tarragona)	94
Andorra (Teruel)	62	Horche (Guadalajara)	56	Rosell (Castellón)	54
Aracena (Huelva)	39	Huelva	38	Sacedón (Guadalajara)	63
Aranda de Duero (Burgos)	71	Huesca	50	Salamanca	54
Aranjuez (Madrid)	87	Humanes (Guadalajara)	69	San Sebastián (Guipúzcoa)	41
Arrecife (Canarias)	42	Ibiza (Baleares)	19	Sant Carles de la Rápita	40
Ávila	106	Jaca (Huesca)	64	Santa Cruz de Tenerife (Tenerife)	48
Ayora (Valencia)	44	Jadraque (Guadalajara)	52	Santander (Cantabria)	37
Azuaga (Badajoz)	84	Jaén	42	Santiago de Compostela (A Coruña)	86
Badajoz	58	Jaraíz de la Vera (Cáceres)	144	Segovia	100
Barcelona	54	Jarandilla de la Vera (Cáceres)	132	Serradilla (Cáceres)	82
Baza (Granada)	51	Juzbado (Salamanca)	55	Sevilla	34
Bejar (Salamanca)	124	La Carolina (Jaén)	79	Siete Aguas (Valencia)	46
Benavente (Zamora)	74	La Font de la Figuera (Valencia)	63	Sigüenza (Guadalajara)	54
•	49	L'Ametlla de Mar (Tarragona)	52	Soria	63
Benicarló (Castellón)	49	Las Palmas (Canarias)		Talavera de la Reina (Toledo)	
Beteta (Cuenca)			55		122
Bilbao (Vizcaya)	45	León	73	Talayuela (Cáceres)	104
Brihuega (Guadalajara)	31	Llanes (Asturias)	40	Tarancón (Cuenca)	48
Buñol (Valencia)	41	Lleida	68	Tarifa (Cádiz)	59
Burgos	33	Logroño	53	Tarragona	28
Cabacés (Tarragona)	27	Lugo	61	Teruel	45
Cabra (Córdoba)	48	Madrid CSN	82	Toledo	85
Cáceres	69	Madroñera (Cáceres)	91	Torija (Guadalajara)	42
Cádiz	31	Maella (Zaragoza)	75	Torrecillas de la Tiesa (Cáceres)	91
Calaicete (Teruel)	66	Mahón (Baleares)	25	Torrejon el Rubio (Cáceres)	69
Calatayud (Zaragoza)	90	Málaga	67	Tortosa (Tarragona)	50
Cambrils (Tarragona)	58	Malpartida de Plasencia (Cáceres)	74	Tremp (Lleida)	49
Campo de Criptana (Ciudad Real)	47	Manresa (Barcelona)	66	Trillo (Guadalajara)	67
Cangas de Narcea (Asturias)	104	Maranchón (Guadalajara)	60	Trujillo (Cáceres)	100
Carlet (Valencia)	54	Marbella (Málaga)	52	Tudela (Navarra)	56
Cartagena (Murcia)	47	Medina del Campo (Valladolid)	89	Tui (Pontevedra)	128
Casas Ibáñez (Albacete)	47	Medinaceli (Soria)	63	Utiel (Valencia)	50
Casatejada (Cáceres)	122	Melilla	75	Valdelacasa de Tajo (Cáceres)	83
Castañar de Ibor (Cáceres)	114	Mequinenza (Zaragoza)	62	Valdepeñas (Ciudad Real)	56
Castellón de la Plana	58	Mérida (Badajoz)	46	Valencia	52
Ceuta	55	Molina de Aragón (Guadalajara)	64	Valencia de Alcántara (Cáceres)	136
Cifuentes (Guadalajara)	54	Monroy (Cáceres)	75	Valladolid	67
Ciudad Real	69	Montblanc (Tarragona)	77	Valls (Tarragona)	52
Ciudad Rodrigo (Salamanca)	106	Mora del Ebro (Tarragona)	72	Verín (Orense)	128
Cofrentes (Valencia)	49	Motril (Granada)	43	Villacarrillo (Jaén)	43
Collado Villalba (Madrid)	80	Murcia	44	Villalba del Rey (Cuenca)	49

ESTACIÓN	TD (nSv/h)	ESTACIÓN	TD (nSv/h)	ESTACIÓN	TD (nSv/h)
Córdoba	48	Navalmoral de la Mata (Cáceres)	146	Villamartín (Cádiz)	38
Coria (Cáceres)	112	Navarrés (Valencia)	37	Villanueva de la Vera (Cáceres)	188
Cortes de Pallás (Valencia)	46	Orense	148	Villar de Domingo García (Cuenca)	49
Cuenca	40	Osuna (Sevilla)	42	Vitoria (Álava)	51
Deleitosa (Cáceres)	96	Oviedo (Asturias)	49	Zamora	65
El Bonillo (Albacete)	44	Palencia	43	Zaorejas (Cuenca)	42
El Cabril (Córdoba)	105	Palma de Mallorca (Baleares)	31	Zaragoza	47
El Puente del Arzobispo (Toledo)	109	Pamplona (Navarra)	45		

Tabla 4.3. Valores medios de tasa de dosis estaciones redes comunidades autónomas. Año 2021

	(microSv/h)
1. Cofrentes (Red Valenciana)	0,13
2. Cofrentes Central (R. Valenciana)	0,13
3. Cortes de Pallás (Red Valenciana)	0,16
4. Jalance (Red Valenciana)	0,16
5. Pedrones (Red Valenciana)	0,14
6. Almadraba (Red Catalana)	0,12
7. Ascó (Red Catalana)	0,12
8. Barcelona (Red Catalana)	0,10
9. Pujalt (Red Catalana)	0,13
10. Roses (Red Catalana)	0,14
11. Bilbao (Red Vasca)	0,06
12. Vitoria (Red Vasca)	0,07
13. Almaraz (Red Extremadura)	0,14
14. Azuaga (Red Extremadura)	0,08
15. Cáceres (Red Extremadura)	0,08
16. E.Torrejón (Red Extremadura)	0,12
17. E. Valdecañas ((Red Extremadura)	0,09
18. Fregenal (Red Extremadura)	0,10
19. Miravete (Red Extremadura)	0,12
20. Navalmoral (Red Extremadura)	0,11
21. Romangordo (Red Extremadura)	0,13
22. Saucedilla (Red Extremadura)	0,12
23. Serrejón (Red Extremadura)	0,11
24. Talayuela (Red Extremadura)	0,12

A lo largo de todo el proceso de realización de las medidas de baja actividad, que son las que corresponden a las muestras obtenidas en los programas de vigilancia radiológica ambiental, existen diversos factores que pueden influir en los resultados que se obtienen, y por ello resulta de gran importancia tratar de garantizar la homogeneidad y fiabilidad de las medidas realizadas en los diferentes laboratorios.

Para garantizar su competencia técnica, los laboratorios deben disponer de un sistema de calidad adecuado, y entre otros requisitos, la participación en campañas de intercomparación analítica es imprescindible para que los laboratorios puedan comprobar y demostrar la bondad de sus medidas.

Todo ello justifica el interés y dedicación de recursos invertido por el CSN para el desarrollo de estas campañas, que desde hace más de 25 años, con el apoyo técnico del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Ciemat), organiza ejercicios de intercomparación entre laboratorios relacionados con la vigilancia radiológica ambiental.

La programación anual de los ejercicios cubre todas las vías de exposición de las personas a las radiaciones ionizantes, agrupando las diferentes matrices en cuatro grandes grupos (aire, agua, minerales y orgánicas), repetidas cada cuatro años, seleccionando en cada una de ellas diferentes tipos de muestra, abarcando la gran variabilidad que existe en los programas de vigilancia radiológica ambiental. Adicionalmente, cada cuatro o cinco años se lleva a cabo un ejercicio de intercomparación de medidas de niveles de radiación ambiental mediante dosímetros de termoluminiscencia.

Se emplean matrices con niveles de concentraciones de actividad bajos e, incluso, muy bajos. Durante unos años se estableció una colaboración con el OIEA, que facilitó muestras certificadas para la realización de estos ejercicios y utilizó los resultados de las campañas del CSN

en sus ejercicios inter-laboratorios. Pero desde hace ya varios años las muestras son preparadas por el Laboratorio de Radiología Ambiental, del departamento de Ingeniería Química y Química Analítica de la Universidad de Barcelona con la colaboración del Laboratorio de Preparación de Materiales de Referencia (Mat Control) de la misma universidad.

En las campañas participan los 22 laboratorios nacionales que colaboran con el CSN en el desarrollo de los programas REM y PVRAIN, cuya obligatoriedad queda establecida en los convenios de colaboración suscritos con el CSN, y además otros laboratorios públicos o privados que intervienen también en los programas de vigilancia llevados a cabo bajo la responsabilidad de los titulares de las instalaciones, o que realizan otras medidas de control, investigación o en otros ámbitos, con la característica común de sus niveles radiológicos ambientales. El número total de participantes varía según las matrices, hasta más de 45 laboratorios que generalmente corresponde a muestras de agua. Además de laboratorios nacionales participa habitualmente el laboratorio portugués del Instituto Técnico Superior de la Universidad de Lisboa y ocasionalmente también el Laboratorio de Vigilancia Radiológica Ambiental del Centro de Protección e Higiene de las Radiaciones de La Habana en Cuba.

En el año 2021 finalizó la campaña iniciada en 2020 en la que la matriz objeto de estudio, distribuida a los participantes, correspondió a muestras suelos, con radionucleidos naturales y antropogénicos preparados en el Laboratorio de Preparación de Materiales para el Control de la Calidad (Mat Control) en colaboración con el Laboratorio de Radiología Ambiental, del departamento de Ingeniería Química y Química Analítica de la Universidad de Barcelona. Participaron 39 laboratorios.

En este ejercicio se solicitó de nuevo resultados en dos tiempos: en un plazo de 72 horas, que podría corresponder a la respuesta de los laboratorios en una situación de emergencia, y en el plazo de dos meses, que sería la respuesta de los laboratorios siguiendo sus procedimientos habituales de trabajo. Adicionalmente, en este ejercicio se envió un suelo con homogeneización simple y se solicitó a los laboratorios que realizaran el pretratamiento siguiendo sus procedimientos habituales, con objeto de analizar las diferencias en dicho pretratamiento y en los resultados finales.

Como en 2020, debido a la situación pandémica por el coronavirus, en 2021 no se pudo celebrar la Jornada sobre Vigilancia Radiológica Ambiental, donde se presentan a los participantes en la campaña la evaluación de los resultados, habitualmente realizada por el Ciemat. No obstante, el informe fue distribuido a los participantes y otras partes interesadas. En él se concluye de manera general que los laboratorios participantes tienen capacidad para realizar determinaciones de radionucleidos naturales y artificiales en muestras de suelos con una baja concentración de actividad con un nivel de calidad

satisfactorio. Como en la campaña anterior, este informe será publicado por el CSN dentro de su colección de informes técnicos.

En este año 2021 se inició una nueva campaña en la que la matriz objeto de estudio distribuida a los participantes fueron filtros de captación atmosférica con radionucleidos naturales y artificiales, preparados en el Laboratorio de Preparación de Materiales para el Control de la Calidad (Mat Control) en colaboración con el Laboratorio de Radiología Ambiental, del departamento de Ingeniería Química y Química Analítica de la Universidad de Barcelona. Han participado 36 laboratorios. Se ha mantenido en este ejercicio la solicitud de resultados en dos tiempos: 72 horas, para evaluar la respuesta de los laboratorios en una hipotética situación de emergencia, y dos meses, que sería la respuesta de los laboratorios siguiendo sus procedimientos habituales de trabajo. Actualmente se está preparando el informe final con todos los resultados y conclusiones.

Actividad en los Efluentes Radiactivos Gaseosos (Bg/año). Año 2021

1. Instalaciones en explotación

1.1. Centrales Nucleares(1)

	Almaraz 1 & 2	Ascó 1	Ascó 2	Cofrentes	Trillo	Vandellós 2
Gases Nobles	1,00E+12	2,69E+10	9,00E+10	1,40E+12	9,94E+10	1,45E+11
Alfa total	5,10E+03	4,28E+03	3,34E+03	2,39E+05	ND	ND
Ag-110m	ND	ND	ND	ND	2,46E+05	ND
Co-58	ND	7,16E+05	9,21E+05	7,24E+03	ND	1,72E+07
Co-60	8,36E-01	1,40E+06	1,89E+06	1,69E+05	ND	2,98E+06
Cs-134	ND	ND	ND	ND	ND	ND
Cs-137	ND	ND	ND	ND	ND	ND
C-14	3,54E+11	1,51E+11	9,60E+10	1,13E+11	2,65E+11	3,44E+11
H-3	5,73E+12	8,26E+11	6,88E+11	4,60E+11	7,97E+11	9,26E+11
I-131	ND	ND	ND	1,24E+07	ND	7,19E+05
Mn-54	ND	ND	ND	6,10E+05	ND	2,67E+05
Sr-90	ND	1,38E+03	2,41E+03	3,74E+06	ND	ND
Otros radionucleidos	ND	ND	ND	7,70E+07	ND	5,33E+07

⁽¹⁾ ND: No detectado

1.2. Instalaciones del Ciclo del Combustible⁽¹⁾

	Fábrica de Juzbado	El Cabril
Alfa total	5,38E+04	1,83E+04
Beta total	—	8,61E+04
Actividad gamma	—	ND
H-3	—	2,68E+09
C-14	<u>—</u>	1,66E+07

⁽¹⁾ ND: No detectado

2. Instalaciones en fase de parada definitiva, desmantelamiento, clausura o latencia

2.1. Centrales Nucleares

2.1.1. CN Vandellós 1

La central se encuentra en fase de latencia. A lo largo del año 2021 no se han producido emisiones de efluentes radiactivos gaseosos al exterior.

2.1.2. CN José Cabrera

La central se encuentra en fase de desmantelamiento desde el día 1 de febrero de 2010, fecha en la que se aprobó que ENRESA asumiera la titularidad de la instalación e iniciara su desmantelamiento. A lo largo del año 2021 se han producido emisiones de efluentes radiactivos

gaseosos al medio ambiente como consecuencia de las tareas de desmantelamiento realizadas, sin haberse detectado actividad en los análisis realizados.

	José Cabrera ⁽¹⁾
Co-60	ND
Cs-137	ND
H-3	ND
Otros radionucleidos	ND

⁽¹⁾ ND: No detectado

2.1.3. CN Santa Maria de Garoña

La central se encuentra en cese definitivo de explotación desde el 6 de julio de 2013.

	Sta. Mª Garoña ⁽¹⁾
Alfa total	7,30E+03
Ag-110m	ND
Co-58	ND
Co-60	9,30E+02
Cs-134	ND
Cs-137	2,38E+03
H-3	6,13E+10
Mn-54	ND
Sr-90	ND
Otros radionucleidos	ND

⁽¹⁾ ND: No detectado

2.2. Instalaciones del Ciclo del Combustible

2.2.1. Planta Quercus

Dado que la planta se encuentra, desde el 1 de enero del 2003, en situación de parada definitiva de las actividades productivas, no se han generado efluentes gaseosos radiactivos a lo largo del año 2021.

2.3. Centros de Investigación:

2.3.1. Ciemat

Debido a la ausencia de operaciones en el área restringida del Proyecto de Desmantelamiento del PIMIC, no se han generado efluentes gaseosos radiactivos a lo largo del año 2021.

Actividad en los Efluentes Radiactivos Líquidos (Bq/año). Año 2021

1. Instalaciones en explotación

1.1. Centrales Nucleares (1)

	Almaraz 1 & 2	Ascó 1	Ascó 2	Cofrentes	Trillo	Vandellós 2
Alfa total	ND	6,77E+05	ND	ND	ND	ND
Ag-110m	3,52E+08	2,11E+07	1,18E+08	ND	7,04E+06	ND
Co-58	1,06E+09	6,35E+08	1,73E+08	2,20E+06	3,93E+06	8,28E+08
Co-60	1,35E+09	1,35E+09	5,49E+08	3,33E+07	2,46E+07	1,30E+09
Cs-134	1,72E+07	1,06E+07	ND	2,08E+06	ND	4,31E+07
Cs-137	3,07E+08	1,53E+08	1,48E+07	1,93E+07	3,30E+06	1,00E+09
H-3	4,08E+13	2,50E+13	9,63E+12	5,63E+11	1,56E+13	2,23E+13
I-131	8,95E+06	ND	ND	ND	ND	ND
Mn-54	9,19E+07	5,38E+07	2,53E+07	8,27E+06	2,96E+06	2,46E+07
Sr-90	2,59E+07	3,54E+07	2,09E+07	8,51E+06	ND	1,12E+07
Otros radionucleidos	1,25E+10	4,12E+09	1,04E+09	3,16E+07	2,21E+08	7,19E+09

⁽¹⁾ ND: No detectado

1.2. Instalaciones del Ciclo del Combustible

1.2.1. Fábrica de Combustible de Juzbado

	Fábrica de Juzbado
Alfa total	2,33E+07

1.2.2. Centro de Almacenamiento de Residuos de Baja y Media Actividad de El Cabril

El Cabril es una instalación que está licenciada con condición de vertido nulo para los efluentes radiactivos líquidos por lo que no está previsto que en condiciones normales de operación se efectúen descargas al exterior de líquidos contaminados.

2. Instalaciones en fase de parada definitiva, desmantelamiento, clausura o latencia

2.1. Centrales Nucleares

2.1.1. CN Vandellós 1

La central se encuentra en fase de latencia. A lo largo del año 2021 no se han producido emisiones de efluentes radiactivos líquidos al medio ambiente.

2.1.2. CN José Cabrera

La central se encuentra en fase de desmantelamiento desde el día 1 de febrero de 2010, fecha en la que se aprobó que ENRESA asumiera la titularidad de la instalación e iniciara su desmantelamiento. A lo largo de 2021 se han efectuado vertidos de efluentes radiactivos líquidos como consecuencia de las tareas de desmantelamiento realizadas.

	José Cabrera
Co-60	3,36E+05
Cs-137	6,93E+07
Fe-55	3,92E+04
Sr-90	2,61E+04
H-3	6,82E+07
Alfa total	ND
Otros radionucleidos	ND

2.1.3. CN Santa María de Garoña

La central se encuentra en cese definitivo de explotación desde el 6 de julio de 2013.

	Sta. Mª Garoña ⁽¹⁾
Alfa total	1,73E+05
Ag-110m	ND
Co-58	ND
Co-60	9,78E+06
Cs-134	ND
Cs-137	8,11E+06
H-3	5,97E+10
Mn-54	ND
Sr-90	3,55E+05
Otros radionucleidos	7,25E+06

⁽¹⁾ ND: No detectado

2.2. Instalaciones del Ciclo del Combustible:

2.2.1. Planta Quercus

En el año 2021 los efluentes radiactivos líquidos se han originado como consecuencia del tratamiento, para su acondicionamiento y vertido, de las aguas de corta y de los líquidos sobrenadantes del dique de estériles.

	Planta Quercus
Alfa total	5,38E+06

2.3. Centros de Investigación

2.3.1. Ciemat

	Ciemat ⁽¹⁾
Co-60	ND
Cs-137	1,21E+04
H-3	ND
Sr-90	ND
Otros radionucleidos	9,50E+02

⁽¹⁾ ND: No detectado

ÍNDICE DE CONTENIDOS

IN'	NTRODUCCIÓN3					
SU	MAR	RIO				
1.	ОВ	JETIVOS, ALCANCE Y DESARROLLO DE LA VIGILANCIA RADIOLÓGICA AMBIENTAL				
2.		OGRAMAS DE VIGILANCIA RADIOLÓGICA AMBIENTAL (PVRA) DE LAS CENTRALES				
	NU	ICLEARES Y DE OTRAS INSTALACIONES NUCLEARES Y RADIACTIVAS 1				
	1.	Vigilancia radiológica ambiental alrededor de las centrales nucleares en operación				
		1.1. Descripción de los programas de vigilancia radiológica ambiental				
		1.2. Resultados				
		1.2.1. Aire				
		1.2.2. Radiación directa				
		1.2.3. Depósito				
		1.2.4. Agua				
		1.2.5. Organismos indicadores				
		1.2.6. Alimentos				
	2.	Vigilancia alrededor de otras instalaciones nucleares y radiactivas en operación				
		2.1. Descripción de los programas de vigilancia radiológica ambiental				
		2.2. Resultados				
		2.2.1. Aire				
		2.2.2. Radiación directa				
		2.2.3. Depósito				
		2.2.4. Agua				
		2.2.5. Alimentos				
		2.2.6. Organismos indicadores				
	3.	Vigilancia alrededor de instalaciones nucleares y radiactivas en situación de parada definitiva,				
		desmantelamiento, clausura o latencia				
		3.1. Ciemat				
		3.1.1. Características de la instalación				
		3.1.2. Descripción y resultados del PVRA				
		3.2. Fábrica de Uranio de Andújar (FUA)				
		3.2.1. Características de la instalación				
		3.2.2. Descripción y resultados del PVRA				
		3.3. Vandellós I				
		3.3.1. Características de la instalación				
		3.3.2. Descripción y resultados del PVRA				
		3.4. Planta Lobo G				
		3.4.1. Características de la instalación				
		3.4.2. Descripción y resultados del PVRA				
		3.5. Planta Quercus				
		3.5.1. Características de la instalación				
		3.5.2. Descripción y resultados del PVRA				
		3.6. José Cabrera				
		3.6.1. Características de la instalación 8				
		3.6.2. Descripción y resultados del PVRA				

		3.7. Santa María de Garoña
		3.7.1. Características de la instalación
		3.7.2. Descripción y resultados del PVRA
	4.	Otros Programas de Vigilancia
		4.1. Minería de uranio
		4.1.1. Casillas de Flores
		4.1.1.1. Características de la instalación
		4.1.1.2. Descripción y resultados del PVRA
		4.1.2. Valdemascaño
		4.1.2.1. Características de la instalación
		4.1.2.2. Descripción y resultados del PVRA
		4.2. Vigilancias especiales
		4.2.1. Palomares
		4.2.1.1. Características
		4.2.1.2. Descripción y resultados del PVRA
		4.2.2. Centro de Recuperación de Inertes (CRI-9)
		4.2.2.1. Características
		4.2.2.2. Descripción y resultados del PVRA
	5.	Vigilancia Radiológica Independiente del CSN en el entorno de las instalaciones
		5.1. Programas de Vigilancia Radiológica Independientes realizados directamente por el CSN
		5.2. Programa de vigilancia encomendado a la Generalidad de Cataluña
		5.3. Programa de vigilancia encomendado a la Generalidad Valenciana
		5.4. Resultados
	1.	Red de Estaciones de Muestreo (REM) 1 1.1. Vigilancia de la atmósfera y del medio terrestre 1 1.1.1. Estaciones de muestreo 1 1.1.2. Diseño y desarrollo del programa de vigilancia 1 1.1.3. Resultados 1 1.2. Vigilancia del medio acuático 1 1.2.1. Vigilancia de las aguas continentales 1 1.2.2. Vigilancia de las aguas costeras 1 1.2.3. Convención para la protección del medio ambiente marino del Atlántico del Nordeste
4.	REI	OSPAR)
	1.	Estaciones automáticas
	2.	Características de la REA del CSN
	3.	Resultados
5.		MPAÑAS DE INTERCOMPARACIÓN DE RESULTADOS ANALÍTICOS OBTENIDOS EN BORATORIOS DE MEDIDAS DE BAJA ACTIVIDAD1
4.3		
AN		1
		ividad en los Efluentes Radiactivos Gaseosos (Bq/año). Año 2021
	1.	Instalaciones en explotación
		1.1. Centrales Nucleares
		1.2 Instalaciones del ciclo del combustible

2.	Instalaciones en fase de parada definitiva, desmantelamiento, clausura o latencia			
	2.1. Centrales nucleares	182		
	2.1.1. Central nuclear Vandellós I	182		
	2.1.2. CN José Cabrera	182		
	2.1.3. Central nuclear Santa María de Garoña	182		
	2.2. Instalaciones del Ciclo del Combustible	183		
	2.2.1. Planta Quercus	183		
	2.3. Centros de Investigación	183		
	2.3.1. Ciemat:	183		
Act	ividad en los Efluentes Radiactivos Líquidos (Bq/año), Año 2021	183		
1.	Instalaciones en explotación	183		
	1.1. Centrales Nucleares	183		
	1.2. Instalaciones del Ciclo del Combustible	183		
	1.2.1. Fábrica de Combustible de Juzbado	183		
	1.2.2. Centro de Almacenamiento de Residuos de Baja y Media Actividad de El Cabril	183		
2.	Instalaciones en fase de parada definitiva, desmantelamiento, clausura o latencia			
	2.1. Centrales nucleares	183		
	2.1.1. Central nuclear Vandellós I	183		
	2.1.2. Central nuclear José Cabrera	183		
	2.1.3. Central nuclear Santa María de Garoña	184		
	2.2. Instalaciones del Ciclo del Combustible	184		
	2.2.1. Planta Quercus	184		
	2.3. Centros de investigación	184		
	2.2.1 Ciamat	10/		

Programas de vigilancia radiológica ambiental Resultados 2021

Colección Informes Técnicos 58.2023

