

MÓDULO 16: EMERGENCIAS RADIOLÓGICAS

(CONSIDERACIONES ADICIONALES)

- 16.1 ACCIDENTES EN OTRAS INSTALACIONES NUCLEARES
- 16.2 ACCIDENTES CON FUENTES RADIACTIVAS

MÓDULO 16: EMERGENCIAS RADIOLÓGICAS

16.1 ACCIDENTES EN OTRAS INSTALACIONES NUCLEARES

(CONSIDERACIONES ADICIONALES)

- Reactores de Investigación
- Plantas de Reprocesamiento de Combustible
- Transporte de Combustible Gastado

REACTORES DE INVSTIGACIÓN (1/3)

Riesgo Potencial (1/2)

- Gran variedad de propósitos, tipos y potencias
- Usos
 - Producción de isótopos: uso médico (diagnóstico y tratamiento) e industrial
 - Enseñanza
 - Investigación y Ensayo (materiales, combustible, etc.)
 - Prototipos de reactores de producción energética
- Potencia:
 - Pocos kWt
 - > 100 MWt
- Inventario depende de:
 - Potencia
 - · Grado de quemado
 - Enriquecimiento

REACTORES DE INVSTIGACIÓN (2/3))

Riesgo Potencial (2/2)

- Reactores menos potentes:
 - Pequeño inventario
 - Sistemas de seguridad sencillos (sin contención)
 - Consecuencias al exterior menores (incluso en accidentes severos)
- Reactores más potentes:
 - Sistemas de seguridad y personal similares a centrales nucleares
 - Consecuencias de accidentes similares a centrales nucleares
- Situación:
 - Cercanías o interior de poblaciones
 - Mayor riesgo para una emisión dada

REACTORES DE INVSTIGACIÓN (3/3))

Planificación de Emergencias

- Elementos de planificación: semejante a CCNN
- Categoría de Planificación (OIEA GS-R-2):
 - · Categoría II y III
 - Emisión potencial por encima de niveles de intervención genéricos
 - Dosis pequeñas, sin riesgo de efectos deterministas
- Nivel de preparación basado:
 - Análisis de accidentes potenciales
 - Análisis de consecuencias potenciales
- Módulo 3 del Curso:
 - Requisitos de preparación de emergencias
 - Requisitos de actuación en emergencia

INSTALACIONES DE REPROCESAMIENTO DE COMBUSTIBLE (1/2

Riesgo Potencial

- Almacenamiento de combustible gastado
 - Riesgo de criticidad
 - Riesgo por calor residual
 - Riesgo de rotura de confinamiento
- Planta de reprocesamiento
 - Riesgo de criticidad
 - Riesgo de incendio y explosión (uso de oxidantes y reductores fuertes, H₂ por radiólisis)
 - Inventario relativamente bajo: riesgo bajo de accidente grave
- Almacenamiento de líquidos altamente radiactivos
 - Riesgo más alto
 - Tanques con grandes cantidades de líquido muy activo (10¹⁸ Bq 10⁷ Ci)
 - Procesos de radiólisis precipitación de yodos en forma química explosiva, calor residual
 - Sistemas de seguridad: refrigeración, ventilación, filtración, nivel, fugas
 - Efecto: contaminación de suelo y medio acuático
- · Almacenamiento de otros residuos radiactivos

INSTALACIONES DE REPROCESAMIENTO DE COMBUSTIBLE (2

Preparación de Emergencias

- Fases de Planificación:
 - generales de instalaciones nucleares
- Escenarios: específicos
 - Criticidad
 - Incendio y explosión
 - Fuga de residuos líquidos

TRANSPORTE DE MATERIAL NUCLEAR IRRADIADO (1/6

Riesgo Potencial (1/2)

- Elevada actividad:10¹⁵ Bq 10⁶ Ci por contendor
- Riesgo principal: radionucleidos volátiles (Kr-85, I-129)
- Uso de contenedores específicos:
 - Blindaje de la radiación
 - Refrigeración calor residual
 - Confinamiento de material radiactivo
 - Protección en caso de accidente (ensayos de integridad: perforación, incendio, etc.)
 - Licenciados por el Ministerio de Industria, previo informe del CSN
 - Ejemplo: Contenedores DPT de C.N. Trillo 1

TRANSPORTE DE MATERIAL NUCLEAR IRRADIADO (2/6

Riesgo Potencial (2/2)

- Riesgos principales
 - Accidente de tráfico sin incendio:
 - Irradiación externa por Kr-85
 - Efecto sólo cerca del lugar del accidente
 - Elevada irradiación en caso de elementos expuestos
 - Accidente de tráfico con incendio:
 - Dosis potencial muy elevada en la cercanía
 - Efecto cerca del lugar del accidente
 - Potencial evacuación en la dirección del viento
 - Riesgo de contaminación inmediata y largo plazo
- Riesgo inferior a reactor:
 - Menor inventario
 - Período de enfriamiento

TRANSPORTE DE MATERIAL NUCLEAR IRRADIADO (3/6)

Planificación de la Respuesta en Emergencias (1/2)

- Muy distinta a la de una central nuclear (escenarios muy distintos)
- Muy parecida a la del Transporte de Mercancías Peligrosas
- Particularidades
 - Ocurrencia potencial en zonas remotas o pobladas
 - Ocurrencia potencial en terrenos orográficamente difíciles
 - Condiciones meteorológicas adversas
 - Intervención de muchas organizaciones:
 - Fuerzas de Orden Público (Tráfico)
 - Bomberos
 - Servicios Sanitarios y Protección Civil
 - Especialistas en Protección Radiológica

TRANSPORTE DE MATERIAL NUCLEAR IRRADIADO (4/6

Planificación de la Respuesta en Emergencias (2/2)

Bases de Planificación

- Sistema de transporte utilizado
- Tipo de contenedor utilizado
- Escenarios accidentales y consecuencias potenciales

Contenido del Plan

- Organizaciones implicadas
 - Responsabilidades
 - Capacidades
 - Funciones
- Procedimientos de alerta y notificación
- Métodos de alerta y comunicación a la población
- Niveles de intervención para exposición y contaminación
- Medidas de protección potenciales
- · Procedimientos para acciones de respuesta
- · Medios sanitarios
- Procedimientos de formación, entrenamiento, realización de ejercicios y actualización de los planes
- Información pública

TRANSPORTE DE MATERIAL NUCLEAR IRRADIADO (5/6

Respuesta a Accidentes de Transporte

- Medidas de Protección Urgentes
 - Rescate y auxilio a las victimas
 - Evitar criticidad (configuración de elementos combustibles)
 - Control de incendios
 - Control de consecuencias habituales de los accidentes de transporte:
 - Corte de tráfico
 - Evitar nuevos accidentes
 - Control del riesgo de irradiación
 - Prevención de la dispersión de la contaminación radiactiva
 - Delimitación de la zona de riesgo de irradiación y contaminación
- Medidas de Recuperación
 - Descontaminar las personas afectadas
 - Descontaminar y restaurar la vía pública
 - Descontaminar las cercanías del lugar del accidente y llevarlo a situación segura

TRANSPORTE DE MATERIAL NUCLEAR IRRADIADO (6/6)

Responsabilidades de la Planificación y Respuesta de Emergencias

- Expedidor: Máximo responsable
- Transportista
- Organizaciones gubernamentales
 - Fuerzas de Orden Público
 - Bomberos
 - Servicios Sanitarios
 - Protección Civil
 - Consejo de Seguridad Nuclear
 - Autoridades Locales

Formación, ejercicios y actualización

Deben establecerse e implantarse los requisitos correspondientes

Normativa Específica

Guía de Seguridad nº 6.2 del CSN: Programa de Protección Radiológica Aplicable al Transporte de Materiales Radiactivos

Guía de Seguridad nº 6.3 del CSN: Instrucciones Escritas de emergencia Aplicables al Transporte de Materiales Radiactivos por Carretera

MÓDULO 16: EMERGENCIAS RADIOLÓGICAS

16.2 ACCIDENTES CON FUENTES RADIACTIVAS

(CONSIDERACIONES ADICIONALES)

- Clasificación de las Fuentes
- Riesgos asociados a distintas Actividades
- Planificación

GENERAL

Uso de fuentes de radiación

- Mucha cantidad
- Muchos tipos (gamma, beta, alfa) (encapsuladas y no)
- Diversas actividades
 - Industria
 - Medicina
 - Investigación
 - Enseñanza

Riesgo

- Pérdida de control sobre las fuentes radiactivas
- Exposición
 - Trabajadores
 - miembros del público

Necesidad

- Planificación de actuaciones ante potenciales accidentes

CLASIFICACIÓN DE FUENTES. RIESGOS (1/2)

Importancia

- Conocimiento de los riesgos específicos de cada tipo de fuente
- Necesario para la planificación de pre-emergencia
- Planificación previa reduce la probabilidad de sorpresas en las situaciones de emergencia reales

Fuentes Emisoras Gamma (no nucleares) (radiación penetrante)

- Riesgo fundamental: Irradiación externa
- Medidas de Protección:
 - Vigilancia y reducción de la exposición externa:
 - Población
 - Intervinientes
 - Aplicación principios de PR:
 - Distancia
 - Tiempo
 - Blindaje

CLASIFICACIÓN DE FUENTES, RIESGOS (2/2)

Fuentes Emisoras Beta y Alfa (no nucleares) (radiación no penetrante)

- Riesgo fundamental: Irradiación interna
- Medidas de Protección:
 - Evitar incorporación interna y contaminación superficial:
 - Población
 - Intervinientes
 - Reducción de la dispersión
- Dificultad de medición (alfa, principalmente)
- Se considerará ausencia de hermeticidad en la fuente hasta que se confirme lo contrario

Materiales Nucleares

- Riesgo fundamental: criticidad (provoca riesgos de irradiación y contaminación
- Medidas de Protección:
 - Evitar uso de agua (extinción de incendios)

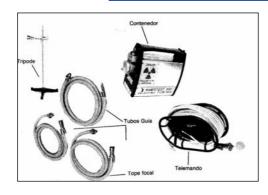
RIESGOS ASOCIADOS A ACTIVIDADES (1/9)

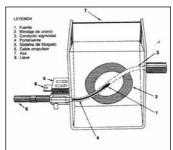
GAMMAGRAFÍA INDUSTRIAL

- Generalidades
 - Uso de:
 - equipo de rayos X (radiografía industrial)
 - fuente de radiación gamma (gammagrafía industrial)
 - Radiografiado de materiales
 - Piezas metálicas
 - Soldaduras
 - Detección de defectos:
 - Agujeros
 - Grietas
 - Impurezas
 - Exposición de película fotográfica depende de la existencia de defectos

RIESGOS ASOCIADOS A ACTIVIDADES (2/9

GAMMAGRAFÍA INDUSTRIAL


- Circunstancias desfavorables para accidentes
 - Radiación intensa y penetrante
 - Para estudio de materiales densos y gruesos
 - En caso de accidente pueden provocar dosis muy elevadas
 - Uso de fuentes pequeñas dimensiones
 - Obtención de imágenes de mejor calidad
 - La intensidad superficial es enorme
 - Si se toca, la fuente puede causar da
 ños graves, incluso en unos pocos segundos
 - La radiografía se realiza en obras
 - Difíciles condiciones de trabajo
 - Interacción con otros trabajos
 - · Poca supervisión directa o apoyo
 - Presión para finalización de trabajos
 - Apresuramiento puede provocar accidentes
- Normativa específica de seguridad
 - Guía de Seguridad 5.14 del CSN



RIESGOS ASOCIADOS A ACTIVIDADES (3/9)

EQUIPOS USADOS EN GAMMAGRAFÍA

ACCIDENTES EN GAMMAGRAFÍA

- Asociados a violación de procedimientos
 - Carencias de formación
 - Apresuramiento
 - Falta de atención
- Errores del operario que producen accidentes
 - La fuente permanece fuera del blindaje cuando no debería
 - Estudio radiológico de verificación de fuente en blindaje
 - No se realiza
 - No se realiza correctamente
 - No se bloquea la fuente en el blindaje
- Suceso iniciador habitual:
 - Fallo del sistema de recogida de la fuente e introducción en el blindaje

MEDIDAS CORRECTORAS EN CASO DE ACCIDENTE CON GAMMÁGRAFO

- 1. Alejarse de la fuente y mantener la calma
- 2. Medir la intensidad de radiación
- Acotar la zona en base a requis
 No dejar la fuente desatendida Acotar la zona en base a requisitos de dosis e impidiendo acceso
- 5. Informar a la organización de lo que está ocurriendo y solicitar asistencia
- Planificar el flujo de acciones a realizar, antes de entrar en zona controlada
- Aplicar el flujo de acciones planificado
- 8. Colocar la fuente utilizando equipos de emergencia, si es posible
- Blindar la fuente si no se puede retraer en el dispositivo radiográfico
- 10. Pedir asistencia, en caso necesario, de un especialista o del fabricante

PÉRDIDA O ROBO DE GAMMÁGRAFO

- Suceso relativamente frecuente
- Grave riesgo:
 - exposición severa
 - graves lesiones
- Acciones correctoras:
 - Búsqueda inmediata (medidor de tasa de dosis)
 - Notificar al CSN (Si no se encuentra "inmediatamente")

RIESGOS ASOCIADOS A ACTIVIDADES (6/

FUENTES ENCAPSULADAS

Usos:

- Control de Procesos: Medida de espesor, densidad, nivel
- Técnicas Analíticas: fluorescencia R-X, etc.
- Medicina: gammaterapia, braquiterapia
- Esterilización: Irradiadores

Riesgos:

- · Generalmente bajo:
 - fuentes fijas
 - Fuentes blindadas
 - Fuentes en instalación radiactiva
 - Señalización
 - Control radiológico
 - Personal autorizado y formado (operadores y supervisores)
- Más Elevado:
 - $-\,\,\,$ Instalaciones de gammaterapia y esterilización: actividad muy elevada ($10^4-10^7\,{
 m Ci}$)
 - Braquiterapia: fuente móvil

RIESGOS ASOCIADOS A ACTIVIDADES (7/9)

PLANTAS DE ESTERILIZACIÓN (irradiadores gamma)

- Esterilización de materiales:
 - Instrumental y material médico
 - Alimentos
 - Etc.
- Irradiación a dosis elevadas de radiación gamma (kGy)
- Fuente encapsulada
- Fuentes de radiación muy activas (10⁵ 10⁷ Ci)
- Isótopos: Co-60, Cs-137
- Blindaje en piscina

Sucesos iniciadores potenciales:

- Fenómenos naturales: terremoto, huracán
- Incendio, explosión
- Fallo del mecanismo de retorno de la fuente
- Pérdida de hermeticidad de la fuente
- Pérdida de blindaje (agua)
- Fallos mecánicos, eléctricos, estructurales

SATÉLITES CON ALIMENTACIÓN NUCLEAR

Riesgos:

- Lanzamiento fallido
- Reentrada no controlada
- Destrucción o incendio y liberación de material radiactivo
- Efecto sobre:
 - Atmósfera (desintegraciones en polvo)
 - Superficie terrestre (desintegraciones en trozos)

Tipos de dispositivos:

- Generadores Termoeléctricos de Radioisótopos (RTG)
 - Generación de electricidad a partir de calor producido por desintegración radiactiva alfa Pu-238, T1/2=87.7 años, 40 -80 Ci

 - Accidente: 1964 EEUU vaporización en reentrada y dispersión por todo el mundo
 - Seguridad actual: encapsulamiento del generador que asegura hermeticidad
- Reactores Nucleares
 - Uranio enriquecido al 90%
 - Seguridad en caso de malfunción:

 - reactor se envía a órbita superior (300 años de decaimiento)
 Si falla, se asegura vaporización y dispersión en capas altas de la atmósfera
 - Accidente: 1978 URSS incendio desintegración en trozos. Contaminación de tundra canadiense

SATÉLITES CON ALIMENTACIÓN NUCLEAR

Fases de Actuación

- Notificación: lugar y momento previsto de reentrada, etc.
 - Estimación de efectos
 - Comunicación a población
- Búsqueda
 - Medios aerotransportados o terrestres
 - Caracterización
 - Información a la población
 - Medidas urgentes de protección
- Recuperación
 - Descontaminación hasta niveles aceptables

Vías de Exposición

- Irradiación externa:
 - RTG: irrelevante (emisor alfa y gamma de baja energía)
 - Reactores: relevante (productos de fisión)
 - Fragmentos depositados: riesgo principal
 Polvo en atmósfera: riesgo mucho menor
- Irradiación interna
 - Inhalación de polvo radiactivo: fase inicial
 - Ingestión de alimentos y agua contaminados

PLAN DE EMERGENCIA PARA ACCIDENTES RADIOLÓGICOS

PEI obligatorio para todas las instalaciones y actividades

Contenido del PEI:

- Acciones inmediatas de prevención de sobredosis
- Notificación interna y externa
- Actuación para devolver la situación a la normalidad
- Evaluación de incidentes:
 - Identificación de causas
 - Estimación de consecuencias
- Exámenes médicos
- Informes de los incidentes para la autoridad reguladora